Lamprecht David, Benzer Anna, Längle Manuel, Capin Mate, Mangler Clemens, Susi Toma, Filipovic Lado, Kotakoski Jani
Institute for Microelectronics, TU Wien, Gußhausstraße 25-29, 1040 Vienna, Austria.
Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria.
Nano Lett. 2025 Jun 4;25(22):8931-8938. doi: 10.1021/acs.nanolett.5c00919. Epub 2025 May 23.
We substitute individual Pt atoms into monolayer MoS and study the resulting atomic structures with single-sideband ptychography (SSB) supported by simulations. We demonstrate that while high-angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM) imaging provides excellent -contrast, distinguishing some defect types such as single and double sulfur vacancies remains challenging due to their low relative contrast difference. However, SSB with its nearly linear -contrast and high phase sensitivity enables reliable identification of these defect configurations, as well as various Pt dopant structures at significantly lower electron doses. Our findings uncover the precise atomic placement and highlight the potential of SSB for detailed structural analysis of dopant-modified 2D materials while minimizing beam-induced damage, offering new pathways for understanding and engineering atomic-scale features in 2D systems.
我们将单个铂原子替代到单层二硫化钼中,并通过模拟支持的单边带叠层成像术(SSB)研究所得的原子结构。我们证明,虽然高角度环形暗场(HAADF)扫描透射电子显微镜(STEM)成像提供了出色的对比度,但由于单硫空位和双硫空位等一些缺陷类型的相对对比度差异较低,区分它们仍然具有挑战性。然而,具有近乎线性对比度和高相位灵敏度的SSB能够在显著更低的电子剂量下可靠地识别这些缺陷构型以及各种铂掺杂结构。我们的研究结果揭示了精确的原子位置,并突出了SSB在最小化束流诱导损伤的同时对掺杂改性二维材料进行详细结构分析的潜力,为理解和设计二维系统中的原子尺度特征提供了新途径。