Wu Liang, Huang Shaozhuan, Dong Wenda, Li Yan, Wang Zhouhao, Mohamed Hemdan S H, Li Yu, Su Bao-Lian
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, Hubei, China.
Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, South-Central University for Nationalities, 182 Minyuan Road, Wuhan, Hubei 430074, China.
J Colloid Interface Sci. 2021 Jul 15;594:531-539. doi: 10.1016/j.jcis.2021.03.032. Epub 2021 Mar 15.
Herein we develop a novel and effective alkoxide hydrolysis approach to in-situ construct the trimanganese tetraoxide (MnO)/graphene nanostructured composite as high-performance anode material for lithium-ion batteries (LIBs). This is the first report on the synthesis of MnO/graphene composite via a facile hydrolysis of the manganese alkoxide (Mn-alkoxide)/graphene precursor. Before hydrolysis, two dimensional (2D) Mn-alkoxide nanoplates are closely adhered to 2D graphene nanosheets via Mn-O chemical bonding. After hydrolysis, the Mn-alkoxide in-situ converts to MnO, while the Mn-O bond is preserved. This leads to a robust MnO/graphene hybrid architecture with 15 nm MnO nanocrystals homogeneously anchoring on graphene nanosheets. This not only prevents the MnO nanocrystals agglomeration but also inversely mitigates the graphene nanosheets restacking. Moreover, the flexible and conductive graphene nanosheets can accommodate the volume change. This maintains the structural and electrical integrity of the MnO/graphene electrode during the cycling process. As a result, the MnO/graphene composite displays superior lithium storage performance with high reversible capacity (741 mAh g at 100 mA g), excellent rate capability (403 mAh g at 1000 mA g) and long cycle life (527 mAg g after 300 cycles at 500 mA g). The electrochemical performance highlights the importance of rational design nanocrystals anchoring on graphene nanosheets for high-performance LIBs application.
在此,我们开发了一种新颖且有效的醇盐水解方法,用于原位构建四氧化三锰(MnO)/石墨烯纳米结构复合材料,作为锂离子电池(LIBs)的高性能负极材料。这是首次报道通过醇锰(Mn - 醇盐)/石墨烯前驱体的简便水解合成MnO/石墨烯复合材料。水解前,二维(2D)的Mn - 醇盐纳米片通过Mn - O化学键紧密附着在2D石墨烯纳米片上。水解后,Mn - 醇盐原位转化为MnO,同时Mn - O键得以保留。这导致形成了一种坚固的MnO/石墨烯混合结构,其中15纳米的MnO纳米晶体均匀地锚定在石墨烯纳米片上。这不仅防止了MnO纳米晶体的团聚,还反过来减轻了石墨烯纳米片的重新堆叠。此外,柔性且导电的石墨烯纳米片可以适应体积变化。这在循环过程中保持了MnO/石墨烯电极的结构和电气完整性。结果,MnO/石墨烯复合材料表现出优异的锂存储性能,具有高可逆容量(在100 mA g时为741 mAh g)、出色的倍率性能(在1000 mA g时为403 mAh g)和长循环寿命(在500 mA g下300次循环后为527 mAh g)。电化学性能突出了合理设计锚定在石墨烯纳米片上的纳米晶体对于高性能LIBs应用的重要性。