Suppr超能文献

活动甲烷微菌的营养需求。

Nutritional requirements of Methanomicrobium mobile.

作者信息

Tanner R S, Wolfe R S

机构信息

Department of Microbiology, University of Illinois, Urbana 61801.

出版信息

Appl Environ Microbiol. 1988 Mar;54(3):625-8. doi: 10.1128/aem.54.3.625-628.1988.

Abstract

A defined medium was developed for Methanomicrobium mobile BP. M. mobile required acetate for growth; the optimal concentration was 30 mM. Other requirements and their optimal concentrations included isobutyrate (0.65 mM), isovalerate (0.73 mM), and 2-methylbutyrate (1.5 mM). The appropriate branched-chain amino acids did not substitute for these branched-chain fatty acids. M. mobile required tryptophan at an optimal concentration of 24 microM. Indole substituted for tryptophan, but the possible precursor compounds shikimic acid and anthranilic acid and the degradation compound skatole did not. Vitamin requirements and their optimal concentrations included pyridoxine (0.49 microM), thiamine (0.15 microM), biotin (0.04 microM), and vitamin B12 (0.04 microM); p-aminobenzoic acid (0.18 microM) was required for optimal growth, but folic acid did not replace p-aminobenzoic acid. M. mobile required an unidentified growth factor found in ruminal fluid or extracts of Methanobacterium thermoautotrophicum for growth. M. mobile has a complex nutrition compared with that of other methanogens, but not an unusual nutrition in the context of organisms from the ruminal ecosystem.

摘要

已为活动甲烷微菌BP开发了一种限定培养基。活动甲烷微菌生长需要乙酸盐;最佳浓度为30 mM。其他营养需求及其最佳浓度包括异丁酸(0.65 mM)、异戊酸(0.73 mM)和2-甲基丁酸(1.5 mM)。合适的支链氨基酸不能替代这些支链脂肪酸。活动甲烷微菌需要色氨酸,最佳浓度为24 μM。吲哚可替代色氨酸,但可能的前体化合物莽草酸和邻氨基苯甲酸以及降解化合物粪臭素则不能。维生素需求及其最佳浓度包括吡哆醇(0.49 μM)、硫胺素(0.15 μM)、生物素(0.04 μM)和维生素B12(0.04 μM);最佳生长需要对氨基苯甲酸(0.18 μM),但叶酸不能替代对氨基苯甲酸。活动甲烷微菌生长需要瘤胃液或嗜热自养甲烷杆菌提取物中发现的一种未知生长因子。与其他产甲烷菌相比,活动甲烷微菌具有复杂的营养需求,但在瘤胃生态系统生物的背景下,其营养需求并非异常。

相似文献

1
Nutritional requirements of Methanomicrobium mobile.
Appl Environ Microbiol. 1988 Mar;54(3):625-8. doi: 10.1128/aem.54.3.625-628.1988.
3
7-Mercaptoheptanoylthreonine phosphate substitutes for heat-stable factor (mobile factor) for growth of Methanomicrobium mobile.
Appl Environ Microbiol. 1991 Oct;57(10):2891-5. doi: 10.1128/aem.57.10.2891-2895.1991.
5
Nutrition and carbon metabolism of Methanococcus voltae.
J Bacteriol. 1982 Mar;149(3):852-63. doi: 10.1128/jb.149.3.852-863.1982.
6
Nutritional features of the intestinal anaerobe Ruminococcus bromii.
Appl Microbiol. 1974 Dec;28(6):1018-22. doi: 10.1128/am.28.6.1018-1022.1974.
7
Development of improved defined media for Clostridium botulinum serotypes A, B, and E.
Appl Environ Microbiol. 1988 Mar;54(3):753-9. doi: 10.1128/aem.54.3.753-759.1988.
8
Tetrahydrofolate and other growth requirements of certain strains of Ruminococcus flavefaciens.
Appl Environ Microbiol. 1977 Feb;33(2):363-9. doi: 10.1128/aem.33.2.363-369.1977.
10
Nutritional alteration of the fatty acid composition of a thermophilic Bacillus species.
J Bacteriol. 1973 Dec;116(3):1096-9. doi: 10.1128/jb.116.3.1096-1099.1973.

引用本文的文献

2
Evolving understanding of rumen methanogen ecophysiology.
Front Microbiol. 2023 Nov 6;14:1296008. doi: 10.3389/fmicb.2023.1296008. eCollection 2023.
3
Insights into the biotechnology potential of .
Front Microbiol. 2022 Dec 15;13:1034674. doi: 10.3389/fmicb.2022.1034674. eCollection 2022.
5
Ozone Decreased Enteric Methane Production by 20% in an Rumen Fermentation System.
Front Microbiol. 2020 Nov 2;11:571537. doi: 10.3389/fmicb.2020.571537. eCollection 2020.
6
Perspectives on Cultivation Strategies of Archaea.
Microb Ecol. 2020 Apr;79(3):770-784. doi: 10.1007/s00248-019-01422-7. Epub 2019 Aug 20.
7
Compositional and functional dynamics of the bovine rumen methanogenic community across different developmental stages.
Environ Microbiol. 2017 Aug;19(8):3365-3373. doi: 10.1111/1462-2920.13846. Epub 2017 Aug 7.
8
Chasing the elusive Euryarchaeota class WSA2: genomes reveal a uniquely fastidious methyl-reducing methanogen.
ISME J. 2016 Oct;10(10):2478-87. doi: 10.1038/ismej.2016.33. Epub 2016 Mar 4.
9
Current and past strategies for bacterial culture in clinical microbiology.
Clin Microbiol Rev. 2015 Jan;28(1):208-36. doi: 10.1128/CMR.00110-14.
10
A versatile medium for cultivating methanogenic archaea.
PLoS One. 2013 Apr 17;8(4):e61563. doi: 10.1371/journal.pone.0061563. Print 2013.

本文引用的文献

1
Some Nutritional Requirements of the Genus Ruminococcus.
Appl Microbiol. 1961 Mar;9(2):91-5. doi: 10.1128/am.9.2.91-95.1961.
2
Nutritional Requirements of Methanosarcina sp. Strain TM-1.
Appl Environ Microbiol. 1985 Jul;50(1):49-55. doi: 10.1128/aem.50.1.49-55.1985.
3
FORMATION OF METHANE BY BACTERIAL EXTRACTS.
J Biol Chem. 1963 Aug;238:2882-6.
4
Some nutritional characteristics of predominant culturable ruminal bacteria.
J Bacteriol. 1962 Oct;84(4):605-14. doi: 10.1128/jb.84.4.605-614.1962.
5
Spontaneous protoplast formation in Methanobacterium bryantii.
J Bacteriol. 1982 Jan;149(1):346-53. doi: 10.1128/jb.149.1.346-353.1982.
6
Nutrition and carbon metabolism of Methanococcus voltae.
J Bacteriol. 1982 Mar;149(3):852-63. doi: 10.1128/jb.149.3.852-863.1982.
7
Antigenic analysis of Methanomicrobiales and Methanobrevibacter arboriphilus.
J Bacteriol. 1982 Nov;152(2):762-4. doi: 10.1128/jb.152.2.762-764.1982.
8
Levels of water-soluble vitamins in methanogenic and non-methanogenic bacteria.
Appl Environ Microbiol. 1983 Mar;45(3):800-3. doi: 10.1128/aem.45.3.800-803.1983.
10
Characterization of Methanobacterium mobilis, sp. n., isolated from the bovine rumen.
J Bacteriol. 1968 May;95(5):1943-51. doi: 10.1128/jb.95.5.1943-1951.1968.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验