Suppr超能文献

纳米尺度物理学中的可重复验证与复制研究。

Reproducible validation and replication studies in nanoscale physics.

作者信息

Clementi N C, Barba L A

机构信息

Department of Mechanical and Aerospace Engineering, The George Washington University, Washington DC, USA.

出版信息

Philos Trans A Math Phys Eng Sci. 2021 May 17;379(2197):20200068. doi: 10.1098/rsta.2020.0068. Epub 2021 Mar 29.

Abstract

Credibility building activities in computational research include verification and validation, reproducibility and replication, and uncertainty quantification. Though orthogonal to each other, they are related. This paper presents validation and replication studies in electromagnetic excitations on nanoscale structures, where the quantity of interest is the wavelength at which resonance peaks occur. The study uses the open-source software PyGBe: a boundary element solver with treecode acceleration and GPU capability. We replicate a result by Rockstuhl (2005, doi:10/dsxw9d) with a two-dimensional boundary element method on silicon carbide (SiC) particles, despite differences in our method. The second replication case from Ellis (2016, doi:10/f83zcb) looks at aspect ratio effects on high-order modes of localized surface phonon-polariton nanostructures. The results partially replicate: the wavenumber position of some modes match, but for other modes they differ. With virtually no information about the original simulations, explaining the discrepancies is not possible. A comparison with experiments that measured polarized reflectance of SiC nano pillars provides a validation case. The wavenumber of the dominant mode and two more do match, but differences remain in other minor modes. Results in this paper were produced with strict reproducibility practices, and we share reproducibility packages for all, including input files, execution scripts, secondary data, post-processing code and plotting scripts, and the figures (deposited in Zenodo). In view of the many challenges faced, we propose that reproducible practices make replication and validation more feasible. This article is part of the theme issue 'Reliability and reproducibility in computational science: implementing verification, validation and uncertainty quantification '.

摘要

计算研究中的可信度建立活动包括验证与确认、可重复性与复制以及不确定性量化。尽管它们相互正交,但却是相关的。本文展示了在纳米尺度结构上电磁激发的验证与复制研究,其中感兴趣的量是共振峰出现的波长。该研究使用了开源软件PyGBe:一种具有树码加速和GPU功能的边界元求解器。尽管我们的方法存在差异,但我们使用二维边界元方法在碳化硅(SiC)颗粒上复制了Rockstuhl(2005年,doi:10/dsxw9d)的结果。来自Ellis(2016年,doi:10/f83zcb)的第二个复制案例研究了长宽比对局域表面声子极化激元纳米结构高阶模式的影响。结果部分复制:一些模式的波数位置匹配,但其他模式不同。由于几乎没有关于原始模拟的信息,无法解释这些差异。与测量SiC纳米柱偏振反射率的实验进行比较提供了一个验证案例。主导模式和另外两个模式的波数确实匹配,但其他次要模式仍存在差异。本文的结果是通过严格的可重复性实践产生的,我们共享了所有的可重复性包,包括输入文件、执行脚本、辅助数据、后处理代码和绘图脚本以及相关图形(存于Zenodo)。鉴于面临的诸多挑战,我们提出可重复性实践使复制和验证更加可行。本文是主题为“计算科学中的可靠性和可重复性:实施验证、确认和不确定性量化”的一部分。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验