Boudaoui Ahmed, El Hadj Moussa Yacine, Hammouch Zakia, Ullah Saif
Laboratory of Mathematics Modeling and Applications, University of Adrar, National Road No. 06, 01000, Adrar, Algeria.
Department of Probability and Statistics, University Djillali liabes, L.P 89, Sidi Bel Abbes 22000, Algeria.
Chaos Solitons Fractals. 2021 May;146:110859. doi: 10.1016/j.chaos.2021.110859. Epub 2021 Mar 20.
In this paper, we investigate an epidemic model of the novel coronavirus disease or COVID-19 using the Caputo-Fabrizio derivative. We discuss the existence and uniqueness of solution for the model under consideration, by using the the Picard-Lindelöf theorem. Further, using an efficient numerical approach we present an iterative scheme for the solutions of proposed fractional model. Finally, many numerical simulations are presented for various values of the fractional order to demonstrate the impact of some effective and commonly used interventions to mitigate this novel infection. From the simulation results we conclude that the fractional order epidemic model provides more insights about the disease dynamics.
在本文中,我们使用卡普托 - 法布里齐奥导数研究新型冠状病毒病(COVID - 19)的一种流行模型。我们通过皮卡德 - 林德洛夫定理讨论所考虑模型解的存在性和唯一性。此外,我们使用一种有效的数值方法为所提出的分数阶模型的解给出一个迭代格式。最后,针对分数阶的各种值进行了许多数值模拟,以展示一些有效且常用的干预措施对减轻这种新型感染的影响。从模拟结果我们得出结论,分数阶流行模型为疾病动态提供了更多见解。