Suppr超能文献

COVID-19 的分数阶 SEIQRD 传染病模型:以意大利为例。

Fractional order SEIQRD epidemic model of Covid-19: A case study of Italy.

机构信息

Department of Mathematics, Arambagh Government Polytechnic, Arambagh, West Bengal, India.

Mahadevnagar High School, Maheshtala, Kolkata, West Bengal, India.

出版信息

PLoS One. 2023 Mar 6;18(3):e0278880. doi: 10.1371/journal.pone.0278880. eCollection 2023.

Abstract

The fractional order SEIQRD compartmental model of COVID-19 is explored in this manuscript with six different categories in the Caputo approach. A few findings for the new model's existence and uniqueness criterion, as well as non-negativity and boundedness of the solution, have been established. When RCovid19<1 at infection-free equilibrium, we prove that the system is locally asymptotically stable. We also observed that RCovid 19<1, the system is globally asymptotically stable in the absence of disease. The main objective of this study is to investigate the COVID-19 transmission dynamics in Italy, in which the first case of Coronavirus infection 2019 (COVID-19) was identified on January 31st in 2020. We used the fractional order SEIQRD compartmental model in a fractional order framework to account for the uncertainty caused by the lack of information regarding the Coronavirus (COVID-19). The Routh-Hurwitz consistency criteria and La-Salle invariant principle are used to analyze the dynamics of the equilibrium. In addition, the fractional-order Taylor's approach is utilized to approximate the solution to the proposed model. The model's validity is demonstrated by comparing real-world data with simulation outcomes. This study considered the consequences of wearing face masks, and it was discovered that consistent use of face masks can help reduce the propagation of the COVID-19 disease.

摘要

本文探讨了 COVID-19 的分数阶 SEIQRD 房室模型,在 Caputo 方法中分为六个不同类别。建立了新模型存在和唯一性准则、解的非负性和有界性的一些结论。当感染无病平衡点处 RCovid19<1 时,我们证明了系统是局部渐近稳定的。我们还观察到 RCovid19<1 时,在没有疾病的情况下,系统是全局渐近稳定的。本研究的主要目的是研究意大利的 COVID-19 传播动态,2020 年 1 月 31 日在意大利首次发现了 2019 年冠状病毒病(COVID-19)感染病例。我们使用分数阶 SEIQRD 房室模型在分数阶框架中,以考虑由于缺乏有关冠状病毒(COVID-19)的信息而导致的不确定性。利用劳斯-赫尔维茨一致性准则和拉塞尔不变性原理分析了平衡点的动力学。此外,还利用分数阶泰勒方法对所提出模型的解进行逼近。通过将实际数据与模拟结果进行比较,验证了模型的有效性。本研究考虑了佩戴口罩的后果,发现一致佩戴口罩有助于减少 COVID-19 疾病的传播。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2288/9987810/50fc2e005c58/pone.0278880.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验