Suppr超能文献

建立肌肉减少症模型以预测接受同步放化疗的鼻咽癌患者的生存率。

Modeling Sarcopenia to Predict Survival for Patients With Nasopharyngeal Carcinoma Receiving Concurrent Chemoradiotherapy.

作者信息

Hua Xin, Li Wang-Zhong, Huang Xin, Wen Wen, Huang Han-Ying, Long Zhi-Qing, Lin Huan-Xin, Yuan Zhong-Yu, Guo Ling

机构信息

Department of Medical Oncology, SunYat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China.

Department of Nasopharyngeal Carcinoma, SunYat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China.

出版信息

Front Oncol. 2021 Mar 11;11:625534. doi: 10.3389/fonc.2021.625534. eCollection 2021.

Abstract

BACKGROUND

The present study aimed to construct a prognostic nomogram including Epstein-Barr virus DNA (EBV-DNA) and sarcopenia in patients with nasopharyngeal carcinoma (NPC) receiving concurrent chemoradiotherapy (CCRT).

METHODS

In this retrospective analysis, we studied 1,045 patients with NPC who had been treated with CCRT between 2010 and 2014. Sarcopenia was determined using routine pre-radiotherapy computed tomography scans of the third cervical vertebrae. A new S-E grade was constructed using a receiver-operating characteristic (ROC) curve analyses determined cutoff values of sarcopenia and plasma EBV-DNA. The nomogram was developed base on the sarcopenia-EBV (S-E) grade and traditional prognostic factors. A calibration curve, time-dependent ROC, decision curve analysis, and the concordance index (C-index) determined the accuracy of prediction and discrimination of the nomogram, and were compared with TNM staging system and a traditional nomogram.

RESULTS

Patient survival was significantly different when sarcopenia (P < 0.001) or EBV-DNA (P = 0.001) were used and they continued to be independent prognostic factors for survival upon univariate (P < 0.001, P = 0.002, respectively) and multivariate (P < 0.001, P = 0.015, respectively) analyses. Predicting overall survival (OS) was more accurate using the S-E grade than using TNM staging and sarcopenia or EBV-DNA alone. Nomogram B (model with sarcopenia) or nomogram A (model without sarcopenia) were then developed based on the identified independent prognostic factors. Comparing nomogram prediction with actual observation showed good agreement among the calibration curves for probability of 1-, 3-, and 5-year OS. Predicted survival (C-index = 0.77) of nomogram B was statistically higher than that of nomogram A (0.676, P = 0.020) and TNM staging (0.604, P < 0.001). Risk group stratification could distinguish between survival curves within respective TNM stages (all stages, P < 0.001; stage III, P < 0.001; stage IV, P = 0.002).

CONCLUSIONS

The sarcopenia-EBV DNA nomogram allowed more accurate prediction of prognosis for patients with NPC receiving CCRT.

摘要

背景

本研究旨在构建一个包含爱泼斯坦-巴尔病毒DNA(EBV-DNA)和肌肉减少症的预后列线图,用于接受同步放化疗(CCRT)的鼻咽癌(NPC)患者。

方法

在这项回顾性分析中,我们研究了2010年至2014年间接受CCRT治疗的1045例NPC患者。通过对第三颈椎进行放疗前常规计算机断层扫描来确定肌肉减少症。利用受试者操作特征(ROC)曲线分析确定的肌肉减少症和血浆EBV-DNA的临界值构建了新的S-E分级。基于肌肉减少症-EBV(S-E)分级和传统预后因素开发列线图。校准曲线、时间依赖性ROC、决策曲线分析和一致性指数(C-index)确定了列线图预测和鉴别能力的准确性,并与TNM分期系统和传统列线图进行了比较。

结果

使用肌肉减少症(P < 0.001)或EBV-DNA(P = 0.001)时患者生存率有显著差异,并且在单因素分析(分别为P < 0.001,P = 0.002)和多因素分析(分别为P < 0.001,P = 0.015)中它们仍然是生存的独立预后因素。使用S-E分级预测总生存期(OS)比单独使用TNM分期、肌肉减少症或EBV-DNA更准确。然后基于确定的独立预后因素开发了列线图B(含肌肉减少症模型)或列线图A(不含肌肉减少症模型)。将列线图预测与实际观察结果进行比较,发现1年、3年和5年OS概率的校准曲线之间具有良好的一致性。列线图B的预测生存率(C-index = 0.77)在统计学上高于列线图A(0.676,P = 0.020)和TNM分期(0.604,P < 0.001)。风险组分层可以区分各个TNM分期内的生存曲线(所有分期,P < 0.001;III期,P < 0.001;IV期,P = 0.002)。

结论

肌肉减少症-EBV DNA列线图能够更准确地预测接受CCRT的NPC患者的预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7857/7993198/f6f0e9adb914/fonc-11-625534-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验