Suppr超能文献

评估乳腺癌风险:风险预测模型综述

Assessing Risk of Breast Cancer: A Review of Risk Prediction Models.

作者信息

Kim Geunwon, Bahl Manisha

机构信息

Beth Israel Deaconess Medical Center, Department of Radiology, Boston, MA, USA.

Massachusetts General Hospital, Department of Radiology, Boston, MA, USA.

出版信息

J Breast Imaging. 2021 Feb 19;3(2):144-155. doi: 10.1093/jbi/wbab001. eCollection 2021 Mar-Apr.

Abstract

Accurate and individualized breast cancer risk assessment can be used to guide personalized screening and prevention recommendations. Existing risk prediction models use genetic and nongenetic risk factors to provide an estimate of a woman's breast cancer risk and/or the likelihood that she has a or mutation. Each model is best suited for specific clinical scenarios and may have limited applicability in certain types of patients. For example, the Breast Cancer Risk Assessment Tool, which identifies women who would benefit from chemoprevention, is readily accessible and user-friendly but cannot be used in women under 35 years of age or those with prior breast cancer or lobular carcinoma in situ. Emerging research on deep learning-based artificial intelligence (AI) models suggests that mammographic images contain risk indicators that could be used to strengthen existing risk prediction models. This article reviews breast cancer risk factors, describes the appropriate use, strengths, and limitations of each risk prediction model, and discusses the emerging role of AI for risk assessment.

摘要

准确且个性化的乳腺癌风险评估可用于指导个性化筛查和预防建议。现有的风险预测模型利用遗传和非遗传风险因素来估计女性患乳腺癌的风险以及她携带某种或某些突变的可能性。每个模型都最适用于特定的临床场景,在某些类型的患者中可能适用性有限。例如,乳腺癌风险评估工具可识别出能从化学预防中获益的女性,该工具易于获取且用户友好,但不能用于35岁以下的女性、有过乳腺癌病史的女性或原位小叶癌患者。基于深度学习的人工智能(AI)模型的新兴研究表明,乳腺钼靶图像包含可用于强化现有风险预测模型的风险指标。本文回顾了乳腺癌风险因素,描述了每种风险预测模型的恰当使用方法、优势和局限性,并讨论了AI在风险评估中的新兴作用。

相似文献

1
Assessing Risk of Breast Cancer: A Review of Risk Prediction Models.
J Breast Imaging. 2021 Feb 19;3(2):144-155. doi: 10.1093/jbi/wbab001. eCollection 2021 Mar-Apr.
2
Artificial intelligence in mammographic phenotyping of breast cancer risk: a narrative review.
Breast Cancer Res. 2022 Feb 20;24(1):14. doi: 10.1186/s13058-022-01509-z.
3
Personalized risk prediction for breast cancer pre-screening using artificial intelligence and thermal radiomics.
Artif Intell Med. 2020 May;105:101854. doi: 10.1016/j.artmed.2020.101854. Epub 2020 Apr 7.
5
Breast cancer risk prediction using machine learning: a systematic review.
Front Oncol. 2024 Mar 20;14:1343627. doi: 10.3389/fonc.2024.1343627. eCollection 2024.
7
Computerized analysis of digitized mammograms of BRCA1 and BRCA2 gene mutation carriers.
Radiology. 2002 Nov;225(2):519-26. doi: 10.1148/radiol.2252010845.
8
Breast cancer and ovarian cancer genetics.
J Long Term Eff Med Implants. 2005;15(5):533-45. doi: 10.1615/jlongtermeffmedimplants.v15.i5.60.
9
10

引用本文的文献

1
Dense breasts and women's health: which screenings are essential?
Clinics (Sao Paulo). 2025 Aug 9;80:100743. doi: 10.1016/j.clinsp.2025.100743.
2
Defining Lifetime Risk Thresholds for Breast Cancer Surgical Prevention.
JAMA Oncol. 2025 Jul 24. doi: 10.1001/jamaoncol.2025.2203.
3
4
Deriving a Mammogram-Based Risk Score from Screening Digital Breast Tomosynthesis for 5-Year Breast Cancer Risk Prediction.
Cancer Prev Res (Phila). 2025 Jun 2;18(6):347-354. doi: 10.1158/1940-6207.CAPR-24-0427.
5
Hereditary Breast Cancer: Comprehensive Risk Assessment and Prevention Strategies.
Genes (Basel). 2025 Jan 13;16(1):82. doi: 10.3390/genes16010082.
10
Risk-Adapted Breast Screening for Women at Low Predicted Risk of Breast Cancer: An Online Discrete Choice Experiment.
Med Decis Making. 2024 Jul;44(5):586-600. doi: 10.1177/0272989X241254828. Epub 2024 Jun 3.

本文引用的文献

1
Supplemental Screening for Patients at Intermediate and High Risk for Breast Cancer.
Radiol Clin North Am. 2021 Jan;59(1):67-83. doi: 10.1016/j.rcl.2020.09.006. Epub 2020 Nov 2.
4
Impact of adding breast density to breast cancer risk models: A systematic review.
Eur J Radiol. 2020 Jun;127:109019. doi: 10.1016/j.ejrad.2020.109019. Epub 2020 Apr 19.
5
NCCN Guidelines Insights: Genetic/Familial High-Risk Assessment: Breast, Ovarian, and Pancreatic, Version 1.2020.
J Natl Compr Canc Netw. 2020 Apr;18(4):380-391. doi: 10.6004/jnccn.2020.0017.
6
Risk Models for Breast Cancer and Their Validation.
Stat Sci. 2020 Mar 3;35(1):14-30. doi: 10.1214/19-STS729.
7
Harnessing the Power of Deep Learning to Assess Breast Cancer Risk.
Radiology. 2020 Feb;294(2):273-274. doi: 10.1148/radiol.2019192471. Epub 2019 Dec 17.
8
Comparison of a Deep Learning Risk Score and Standard Mammographic Density Score for Breast Cancer Risk Prediction.
Radiology. 2020 Feb;294(2):265-272. doi: 10.1148/radiol.2019190872. Epub 2019 Dec 17.
9
Supplemental MRI Screening for Women with Extremely Dense Breast Tissue.
N Engl J Med. 2019 Nov 28;381(22):2091-2102. doi: 10.1056/NEJMoa1903986.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验