Suppr超能文献

微创肝切除术的学习曲线:系统评价和荟萃回归分析。

Learning curves in minimally invasive hepatectomy: systematic review and meta-regression analysis.

机构信息

Department of Hepatopancreatobiliary and Transplant Surgery, Singapore General Hospital, Singapore.

Yong Loo Lin School of Medicine, National University of Singapore, Singapore.

出版信息

Br J Surg. 2021 Apr 30;108(4):351-358. doi: 10.1093/bjs/znaa118.

Abstract

BACKGROUND

Minimally invasive hepatectomy (MIH) has become an important option for the treatment of various liver tumours. A major concern is the learning curve required. The aim of this study was to perform a systematic review and summarize current literature analysing the learning curve for MIH.

METHODS

A systematic review of the literature pertaining to learning curves in MIH to July 2019 was performed using PubMed and Scopus databases. All original full-text articles published in English relating to learning curves for both laparoscopic liver resection (LLR), robotic liver resection (RLR), or a combination of these, were included. To explore quantitatively the learning curve for MIH, a meta-regression analysis was performed.

RESULTS

Forty studies relating to learning curves in MIH were included. The median overall number of procedures required in studies utilizing cumulative summative (CUSUM) methodology for LLR was 50 (range 25-58) and for RLR was 25 (16-50). After adjustment for year of adoption of MIH, the CUSUM-derived caseload to surmount the learning curve for RLR was 47.1 (95 per cent c.i. 1.2 to 71.6) per cent; P = 0.046) less than that required for LLR. A year-on-year reduction in the number of procedures needed for MIH was observed, commencing at 48.3 cases in 1995 and decreasing to 23.8 cases in 2015.

CONCLUSION

The overall learning curve for MIH decreased steadily over time, and appeared less steep for RLR compared with LLR.

摘要

背景

微创肝切除术(MIH)已成为治疗各种肝脏肿瘤的重要选择。人们主要关注的是所需的学习曲线。本研究旨在进行系统评价,总结目前分析 MIH 学习曲线的文献。

方法

使用 PubMed 和 Scopus 数据库对截至 2019 年 7 月与 MIH 学习曲线相关的文献进行系统回顾。纳入所有发表在英文期刊上的关于腹腔镜肝切除术(LLR)、机器人肝切除术(RLR)或两者结合的学习曲线的原始全文文章。为了定量探索 MIH 的学习曲线,进行了荟萃回归分析。

结果

共纳入 40 项与 MIH 学习曲线相关的研究。使用累积和(CUSUM)方法的 LLR 研究中,总体手术例数中位数为 50 例(范围为 25-58 例),RLR 为 25 例(16-50 例)。调整 MIH 采用年份后,RLR 学习曲线需要的 CUSUM 计算例数为 47.1%(95%可信区间为 1.2%至 71.6%);P=0.046)低于 LLR。观察到 MIH 所需手术例数逐年减少,从 1995 年的 48.3 例开始,到 2015 年减少到 23.8 例。

结论

MIH 的总体学习曲线随着时间的推移稳步下降,与 LLR 相比,RLR 的学习曲线似乎更平缓。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验