Oh Namkee, Lim Manuel, Kim Bogeun, Shin Jongmin, Park Seonmin, Rhu Jinsoo, Kim Jongman, Cho Chan Woo, Choi Gyu-Seong
Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.
Department of Surgery, Myongji Hospital, Goyang, Korea.
Sci Rep. 2025 Jul 31;15(1):27935. doi: 10.1038/s41598-025-11627-1.
Minimally invasive liver surgery (MILS) offers significant benefits but faces limited adoption due to its steep learning curve. This study explores the potential of artificial intelligence (AI) in assisting the performance of major MILS by providing intraoperative navigation through real-time segmentation of the safe plane for dissection. We developed and validated a deep learning model for segmenting vascular structures and the avascular plane during pure laparoscopic donor right hepatectomy (PLDRH). The study utilized 48 PLDRH videos from three institutions, with 40 videos used for five-fold cross-validation and 8 for external validation. The U-Net architecture with Mix Transformer encoder was employed for segmentation. Model performance was assessed using Dice similarity coefficient (DSC), precision, recall, and specificity. In internal validation, the model achieved mean DSC of 0.687 (SD 0.21) for vascular structures and 0.659 (SD 0.19) for the avascular plane. External validation showed comparable performance with DSC of 0.649 (SD 0.24) for vascular structures and 0.646 (SD 0.19) for the avascular plane. Visual assessment demonstrated accurate segmentation across different stages of right liver mobilization, despite lower quantitative metrics for vascular structures. This multicenter external validation study demonstrates the feasibility of AI-assisted intraoperative navigation for safe right liver mobilization in MILS. While promising, the study highlights the need for improved annotation strategies and further research to incorporate this technology into real operating theaters.
微创肝脏手术(MILS)具有显著优势,但由于其陡峭的学习曲线,采用率有限。本研究探讨了人工智能(AI)通过实时分割安全解剖平面来辅助主要MILS手术的潜力。我们开发并验证了一种深度学习模型,用于在纯腹腔镜供体右半肝切除术(PLDRH)期间分割血管结构和无血管平面。该研究使用了来自三个机构的48个PLDRH视频,其中40个视频用于五折交叉验证,8个用于外部验证。采用带有Mix Transformer编码器的U-Net架构进行分割。使用骰子相似系数(DSC)、精确率、召回率和特异性评估模型性能。在内部验证中,该模型对血管结构的平均DSC为0.687(标准差0.21),对无血管平面的平均DSC为0.659(标准差0.19)。外部验证显示性能相当,血管结构的DSC为0.649(标准差0.24),无血管平面的DSC为0.646(标准差0.19)。视觉评估表明,尽管血管结构的定量指标较低,但在右肝游离的不同阶段分割准确。这项多中心外部验证研究证明了AI辅助术中导航在MILS中安全游离右肝的可行性。虽然前景广阔,但该研究强调需要改进标注策略,并进一步开展研究以将该技术应用于实际手术室。