Department of Computing, Macquarie University, Sydney, NSW 2109, Australia.
School of Electrical and Data Engineering, University of Technology Sydney, NSW 2007, Australia.
Neural Netw. 2021 Aug;140:203-222. doi: 10.1016/j.neunet.2021.03.006. Epub 2021 Mar 13.
Compared with the traditional analysis of computed tomography scans, automatic liver tumor segmentation can supply precise tumor volumes and reduce the inter-observer variability in estimating the tumor size and the tumor burden, which could further assist physicians to make better therapeutic choices for hepatic diseases and monitoring treatment. Among current mainstream segmentation approaches, multi-layer and multi-kernel convolutional neural networks (CNNs) have attracted much attention in diverse biomedical/medical image segmentation tasks with remarkable performance. However, an arbitrary stacking of feature maps makes CNNs quite inconsistent in imitating the cognition and the visual attention of human beings for a specific visual task. To mitigate the lack of a reasonable feature selection mechanism in CNNs, we exploit a novel and effective network architecture, called Tumor Attention Networks (TA-Net), for mining adaptive features by embedding Tumor Attention layers with multi-functional modules to assist the liver tumor segmentation task. In particular, each tumor attention layer can adaptively highlight valuable tumor features and suppress unrelated ones among feature maps from 3D and 2D perspectives. Moreover, an analysis of visualization results illustrates the effectiveness of our tumor attention modules and the interpretability of CNNs for liver tumor segmentation. Furthermore, we explore different arrangements of skip connections in information fusion. A deep ablation study is also conducted to illustrate the effects of different attention strategies for hepatic tumors. The results of extensive experiments demonstrate that the proposed TA-Net increases the liver tumor segmentation performance with a lower computation cost and a small parameter overhead over the state-of-the-art methods, under various evaluation metrics on clinical benchmark data. In addition, two additional medical image datasets are used to evaluate generalization capability of TA-Net, including the comparison with general semantic segmentation methods and a non-tumor segmentation task. All the program codes have been released at https://github.com/shuchao1212/TA-Net.
与传统的计算机断层扫描分析相比,自动肝肿瘤分割可以提供精确的肿瘤体积,并减少估计肿瘤大小和肿瘤负担的观察者间变异性,这可以进一步帮助医生为肝脏疾病做出更好的治疗选择和监测治疗。在当前主流的分割方法中,多层多核卷积神经网络(CNN)在各种生物医学/医学图像分割任务中引起了广泛关注,具有显著的性能。然而,特征图的任意堆叠使得 CNN 在模仿人类对特定视觉任务的认知和视觉注意力方面非常不一致。为了缓解 CNN 中缺乏合理的特征选择机制的问题,我们利用一种新颖有效的网络架构,称为肿瘤注意力网络(TA-Net),通过嵌入具有多功能模块的肿瘤注意力层来挖掘自适应特征,以辅助肝肿瘤分割任务。特别是,每个肿瘤注意力层可以从 3D 和 2D 角度自适应地突出有价值的肿瘤特征,并抑制特征图中的不相关特征。此外,可视化结果的分析说明了我们的肿瘤注意力模块的有效性以及 CNN 对肝肿瘤分割的可解释性。此外,我们还探讨了信息融合中 skip connections 的不同排列方式。还进行了深入的消融研究,以说明不同的肝肿瘤注意力策略的效果。广泛的实验结果表明,与最先进的方法相比,所提出的 TA-Net 在各种临床基准数据的评估指标下,以较低的计算成本和较小的参数开销,提高了肝肿瘤分割性能。此外,还使用了另外两个医学图像数据集来评估 TA-Net 的泛化能力,包括与通用语义分割方法的比较和非肿瘤分割任务。所有的程序代码都已在 https://github.com/shuchao1212/TA-Net 上发布。