Suppr超能文献

MANet:一种用于 CT 成像中自动肝肿瘤分割的多注意力网络。

MANet: a multi-attention network for automatic liver tumor segmentation in computed tomography (CT) imaging.

机构信息

Perceptual Intelligent Computing Laboratory, Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.

Eikonnex AI Co., Ltd., Bangkok, Thailand.

出版信息

Sci Rep. 2023 Nov 16;13(1):20098. doi: 10.1038/s41598-023-46580-4.

Abstract

Automatic liver tumor segmentation is a paramount important application for liver tumor diagnosis and treatment planning. However, it has become a highly challenging task due to the heterogeneity of the tumor shape and intensity variation. Automatic liver tumor segmentation is capable to establish the diagnostic standard to provide relevant radiological information to all levels of expertise. Recently, deep convolutional neural networks have demonstrated superiority in feature extraction and learning in medical image segmentation. However, multi-layer dense feature stacks make the model quite inconsistent in imitating visual attention and awareness of radiological expertise for tumor recognition and segmentation task. To bridge that visual attention capability, attention mechanisms have developed for better feature selection. In this paper, we propose a novel network named Multi Attention Network (MANet) as a fusion of attention mechanisms to learn highlighting important features while suppressing irrelevant features for the tumor segmentation task. The proposed deep learning network has followed U-Net as the basic architecture. Moreover, residual mechanism is implemented in the encoder. Convolutional block attention module has split into channel attention and spatial attention modules to implement in encoder and decoder of the proposed architecture. The attention mechanism in Attention U-Net is integrated to extract low-level features to combine with high-level ones. The developed deep learning architecture is trained and evaluated on the publicly available MICCAI 2017 Liver Tumor Segmentation dataset and 3DIRCADb dataset under various evaluation metrics. MANet demonstrated promising results compared to state-of-the-art methods with comparatively small parameter overhead.

摘要

自动肝肿瘤分割是肝肿瘤诊断和治疗计划的一个非常重要的应用。然而,由于肿瘤形状和强度变化的异质性,它已成为一项极具挑战性的任务。自动肝肿瘤分割能够建立诊断标准,为各级专家提供相关的放射学信息。最近,深度卷积神经网络在医学图像分割中的特征提取和学习方面表现出了优越性。然而,多层密集特征堆叠使得模型在模仿视觉注意力和放射学专业知识对肿瘤识别和分割任务的感知方面存在很大的不一致性。为了弥补这种视觉注意力能力,注意力机制已经发展起来,以更好地进行特征选择。在本文中,我们提出了一种名为多注意网络(MANet)的新网络,作为注意力机制的融合,以学习突出重要特征,同时抑制肿瘤分割任务中无关特征。所提出的深度学习网络以 U-Net 为基本架构。此外,在编码器中实现了残差机制。卷积块注意力模块分为通道注意力和空间注意力模块,以实现所提出架构的编码器和解码器。在注意力 U-Net 中集成注意力机制以提取低层次特征,以与高层次特征相结合。所开发的深度学习架构在 MICCAI 2017 肝肿瘤分割数据集和 3DIRCADb 数据集上进行了训练和评估,并在各种评估指标下进行了评估。与最先进的方法相比,MANet 表现出了有希望的结果,同时参数开销相对较小。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a52/10654423/0f807b84f7cc/41598_2023_46580_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验