Suppr超能文献

帕金森病高维 MRI 数据的折叠凹惩罚学习。

Folded concave penalized learning of high-dimensional MRI data in Parkinson's disease.

机构信息

Department of Statistics, Penn State University, University Park, PA, United States.

Alibaba DAMO Academy, Seattle, WA, United States.

出版信息

J Neurosci Methods. 2021 Jun 1;357:109157. doi: 10.1016/j.jneumeth.2021.109157. Epub 2021 Mar 26.

Abstract

BACKGROUND

Brain MRI is a promising technique for Parkinson's disease (PD) biomarker development. Its analysis, however, is hindered by the high-dimensional nature of the data, particularly when the sample size is relatively small.

NEW METHOD

This study introduces a folded concave penalized machine learning scheme with spatial coupling fused penalty (fused FCP) to build biomarkers for PD directly from whole-brain voxel-wise MRI data. The penalized maximum likelihood estimation problem of the model is solved by local linear approximation.

RESULTS

The proposed approach is evaluated on synthetic and Parkinson's Progression Marker Initiative (PPMI) data. It achieves good AUC scores, accuracy in classification, and biomarker identification with a relatively small sample size, and the results are robust for different tuning parameter choices. On the PPMI data, the proposed method discovers over 80 % of large regions of interest (ROIs) identified by the voxel-wise method, as well as potential new ROIs.

COMPARISON WITH EXISTING METHODS

The fused FCP approach is compared with L1, fused-L1, and FCP method using three popular machine learning algorithms, logistic regression, support vector machine, and linear discriminant analysis, as well as the voxel-wise method, on both synthetic and PPMI datasets. The fused FCP method demonstrated better accuracy in separating PD from controls than L1 and fused-L1 methods, and similar performance when compared with FCP method. In addition, the fused FCP method showed better ROI identification.

CONCLUSIONS

The fused FCP method can be an effective approach for MRI biomarker discovery in PD and other studies using high dimensionality data/low sample sizes.

摘要

背景

脑 MRI 是开发帕金森病(PD)生物标志物的一种很有前途的技术。然而,由于数据的高维性质,特别是当样本量相对较小时,其分析受到阻碍。

新方法

本研究提出了一种折叠凹惩罚机器学习方案,具有空间耦合融合惩罚(融合 FCP),可直接从全脑体素 MRI 数据中构建 PD 的生物标志物。模型的惩罚最大似然估计问题通过局部线性逼近来解决。

结果

该方法在合成和帕金森进展标志物倡议(PPMI)数据上进行了评估。它在较小的样本量下实现了良好的 AUC 评分、分类准确性和生物标志物识别,并且结果对于不同的调整参数选择具有稳健性。在 PPMI 数据上,该方法发现了超过 80%的体素方法识别的大感兴趣区域(ROI),以及潜在的新 ROI。

与现有方法的比较

在合成和 PPMI 数据集上,使用三种流行的机器学习算法(逻辑回归、支持向量机和线性判别分析)以及体素方法,将融合 FCP 方法与 L1、融合 L1 和 FCP 方法进行了比较。融合 FCP 方法在区分 PD 与对照组方面比 L1 和融合 L1 方法具有更高的准确性,与 FCP 方法的性能相似。此外,融合 FCP 方法在 ROI 识别方面表现更好。

结论

融合 FCP 方法可以成为 PD 及其他使用高维数据/小样本量研究中 MRI 生物标志物发现的有效方法。

相似文献

1
Folded concave penalized learning of high-dimensional MRI data in Parkinson's disease.帕金森病高维 MRI 数据的折叠凹惩罚学习。
J Neurosci Methods. 2021 Jun 1;357:109157. doi: 10.1016/j.jneumeth.2021.109157. Epub 2021 Mar 26.
8
Complex networks reveal early MRI markers of Parkinson's disease.复杂网络揭示帕金森病的早期 MRI 标志物。
Med Image Anal. 2018 Aug;48:12-24. doi: 10.1016/j.media.2018.05.004. Epub 2018 May 17.

本文引用的文献

6
Large-scale evaluation of ANTs and FreeSurfer cortical thickness measurements.ANTs和FreeSurfer皮质厚度测量的大规模评估。
Neuroimage. 2014 Oct 1;99:166-79. doi: 10.1016/j.neuroimage.2014.05.044. Epub 2014 May 29.
7
DTIPrep: quality control of diffusion-weighted images.DTIPrep:弥散加权图像的质量控制。
Front Neuroinform. 2014 Jan 30;8:4. doi: 10.3389/fninf.2014.00004. eCollection 2014.
10
A ROAD to Classification in High Dimensional Space.通往高维空间分类之路
J R Stat Soc Series B Stat Methodol. 2012 Sep;74(4):745-771. doi: 10.1111/j.1467-9868.2012.01029.x. Epub 2012 Apr 12.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验