Department of Statistics, Penn State University, University Park, PA, United States.
Alibaba DAMO Academy, Seattle, WA, United States.
J Neurosci Methods. 2021 Jun 1;357:109157. doi: 10.1016/j.jneumeth.2021.109157. Epub 2021 Mar 26.
Brain MRI is a promising technique for Parkinson's disease (PD) biomarker development. Its analysis, however, is hindered by the high-dimensional nature of the data, particularly when the sample size is relatively small.
This study introduces a folded concave penalized machine learning scheme with spatial coupling fused penalty (fused FCP) to build biomarkers for PD directly from whole-brain voxel-wise MRI data. The penalized maximum likelihood estimation problem of the model is solved by local linear approximation.
The proposed approach is evaluated on synthetic and Parkinson's Progression Marker Initiative (PPMI) data. It achieves good AUC scores, accuracy in classification, and biomarker identification with a relatively small sample size, and the results are robust for different tuning parameter choices. On the PPMI data, the proposed method discovers over 80 % of large regions of interest (ROIs) identified by the voxel-wise method, as well as potential new ROIs.
The fused FCP approach is compared with L1, fused-L1, and FCP method using three popular machine learning algorithms, logistic regression, support vector machine, and linear discriminant analysis, as well as the voxel-wise method, on both synthetic and PPMI datasets. The fused FCP method demonstrated better accuracy in separating PD from controls than L1 and fused-L1 methods, and similar performance when compared with FCP method. In addition, the fused FCP method showed better ROI identification.
The fused FCP method can be an effective approach for MRI biomarker discovery in PD and other studies using high dimensionality data/low sample sizes.
脑 MRI 是开发帕金森病(PD)生物标志物的一种很有前途的技术。然而,由于数据的高维性质,特别是当样本量相对较小时,其分析受到阻碍。
本研究提出了一种折叠凹惩罚机器学习方案,具有空间耦合融合惩罚(融合 FCP),可直接从全脑体素 MRI 数据中构建 PD 的生物标志物。模型的惩罚最大似然估计问题通过局部线性逼近来解决。
该方法在合成和帕金森进展标志物倡议(PPMI)数据上进行了评估。它在较小的样本量下实现了良好的 AUC 评分、分类准确性和生物标志物识别,并且结果对于不同的调整参数选择具有稳健性。在 PPMI 数据上,该方法发现了超过 80%的体素方法识别的大感兴趣区域(ROI),以及潜在的新 ROI。
在合成和 PPMI 数据集上,使用三种流行的机器学习算法(逻辑回归、支持向量机和线性判别分析)以及体素方法,将融合 FCP 方法与 L1、融合 L1 和 FCP 方法进行了比较。融合 FCP 方法在区分 PD 与对照组方面比 L1 和融合 L1 方法具有更高的准确性,与 FCP 方法的性能相似。此外,融合 FCP 方法在 ROI 识别方面表现更好。
融合 FCP 方法可以成为 PD 及其他使用高维数据/小样本量研究中 MRI 生物标志物发现的有效方法。