Suppr超能文献

复杂网络揭示帕金森病的早期 MRI 标志物。

Complex networks reveal early MRI markers of Parkinson's disease.

机构信息

Dipartimento Interateneo di Fisica "M. Merlin", Università degli studi di Bari "A. Moro", Italy; Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Italy.

Dipartimento Interateneo di Fisica "M. Merlin", Università degli studi di Bari "A. Moro", Italy; Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Italy.

出版信息

Med Image Anal. 2018 Aug;48:12-24. doi: 10.1016/j.media.2018.05.004. Epub 2018 May 17.

Abstract

Parkinson's disease (PD) is the most common neurological disorder, after Alzheimer's disease, and is characterized by a long prodromal stage lasting up to 20 years. As age is a prominent factor risk for the disease, next years will see a continuous increment of PD patients, making urgent the development of efficient strategies for early diagnosis and treatments. We propose here a novel approach based on complex networks for accurate early diagnoses using magnetic resonance imaging (MRI) data; our approach also allows us to investigate which are the brain regions mostly affected by the disease. First of all, we define a network model of brain regions and associate to each region proper connectivity measures. Thus, each brain is represented through a feature vector encoding the local relationships brain regions interweave. Then, Random Forests are used for feature selection and learning a compact representation. Finally, we use a Support Vector Machine to combine complex network features with clinical scores typical of PD prodromal phase and provide a diagnostic index. We evaluated the classification performance on the Parkinson's Progression Markers Initiative (PPMI) database, including a mixed cohort of 169 normal controls (NC) and 374 PD patients. Our model compares favorably with existing state-of-the-art MRI approaches. Besides, as a difference with previous approaches, our methodology ranks the brain regions according to disease effects without any a priori assumption.

摘要

帕金森病(PD)是仅次于阿尔茨海默病的第二大常见神经退行性疾病,其特征是长达 20 年的前驱期。由于年龄是该病的一个突出危险因素,未来几年 PD 患者数量将持续增加,因此迫切需要开发有效的早期诊断和治疗策略。我们在这里提出了一种基于复杂网络的新方法,用于使用磁共振成像(MRI)数据进行准确的早期诊断;我们的方法还允许我们研究哪些是受疾病影响最大的大脑区域。首先,我们定义了一个大脑区域的网络模型,并为每个区域关联适当的连接度量。因此,每个大脑都通过一个特征向量来表示,该特征向量编码了大脑区域相互交织的局部关系。然后,随机森林用于特征选择和学习紧凑的表示。最后,我们使用支持向量机将复杂网络特征与 PD 前驱期的典型临床评分相结合,提供诊断指标。我们在帕金森病进展标志物倡议(PPMI)数据库上评估了分类性能,该数据库包括 169 名正常对照(NC)和 374 名 PD 患者的混合队列。我们的模型与现有的最先进的 MRI 方法相比具有优势。此外,与之前的方法不同,我们的方法根据疾病影响对大脑区域进行排名,而无需任何先验假设。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验