Department of Chemistry, Johannes Gutenberg-University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
Max Planck Graduate Center, Forum universitatis 2, Building 1111, 55122 Mainz, Germany.
Nano Lett. 2021 Apr 14;21(7):3325-3330. doi: 10.1021/acs.nanolett.1c00887. Epub 2021 Mar 30.
Implantable sensors continuously transmit information on vital values or biomarker concentrations in bodily fluids, enabling physicians to survey disease progression and monitor therapeutic success. However, currently available technologies still face difficulties with long-term operation and transferability to different analytes. We show the potential of a generalizable platform based on gold nanoparticles embedded in a hydrogel for long-term implanted biosensing. Using optical imaging and an intelligent sensor/reference-design, we assess the tissue concentration of kanamycin in anesthetized rats by interrogating our implanted sensor noninvasively through the skin. Combining a tissue-integrating matrix, robust aptamer receptors, and photostable gold nanoparticles, our technology has strong potential to extend the lifetime of implanted sensors. Because of the easy adaptability of gold nanoparticles toward different analytes, our concept will find versatile applications in personalized medicine or pharmaceutical development.
植入式传感器可连续传输体液中重要值或生物标志物浓度的信息,使医生能够调查疾病进展并监测治疗效果。然而,目前可用的技术在长期运行和对不同分析物的可转移性方面仍然存在困难。我们展示了一种基于金纳米粒子嵌入水凝胶的可推广平台在长期植入式生物传感方面的潜力。我们使用光学成像和智能传感器/参考设计,通过皮肤无创地询问我们植入的传感器,来评估麻醉大鼠中卡那霉素的组织浓度。我们的技术将组织整合基质、强大的适体受体和光稳定的金纳米粒子结合在一起,具有延长植入式传感器寿命的巨大潜力。由于金纳米粒子对不同分析物具有很强的适应性,我们的概念将在个性化医疗或药物开发中得到广泛应用。