Lim Hyojun, Yu Seungho, Choi Wonchang, Kim Sang-Ok
Center for Energy Storage Research, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea.
Division of Energy & Environment Technology, KIST School, Korea University of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea.
ACS Nano. 2021 Apr 27;15(4):7409-7420. doi: 10.1021/acsnano.1c00797. Epub 2021 Mar 30.
Molybedenum disulfide (MoS) is regarded as a promising anode material for next-generation sodium-ion batteries (SIBs) owing to its high theoretical capacity. However, its low conductivity, large volume changes, and undesirable phase transformation hinder its practical applications. In this study, we synthesize a hierarchically designed core-shell heterostructure based on nitrogen-doped MoS/C and silicon oxycarbide (SiOC) (N-MoS/C@SiOC) via the facile pyrolysis of a suspension of an N-MoS/polyfurfural precursor in silicone oil. The nitrogen doping in a two-dimensional MoS structure with carbon incorporation leads to the enlargement of the interlayer spacing and enhancement of the electronic conductivity and mechanical stability, which allows the facile, highly reversible insertion and extraction of sodium ions upon cycling. Further, the nanoscale SiOC shell with surface capacitive reactivity provides a conductive pathway, preventing unfavorable side reactions at the electrode/electrolyte interface and acting as a structure-reinforcing buffer against severe volume expansion issues. As a result, the N-MoS/C@SiOC composite exhibits high reversible capacity (540.7 mAh g), high-capacity retention (>100% after 200 cycles), and excellent rate capability up to 10 A g. The simple hierarchical core-shell design strategy developed in this study allows for the fabrication of high-performance metal sulfide anodes as well as other high-capacity anode materials for energy storage applications.
二硫化钼(MoS₂)因其高理论容量而被视为下一代钠离子电池(SIBs)颇具前景的负极材料。然而,其低导电性、大体积变化以及不良的相变阻碍了其实际应用。在本研究中,我们通过将N-MoS₂/聚糠醛前驱体悬浮液在硅油中进行简便热解,合成了基于氮掺杂MoS₂/C和碳氧化硅(SiOC)的分级设计核壳异质结构(N-MoS₂/C@SiOC)。二维MoS₂结构中的氮掺杂与碳的掺入导致层间距增大、电子导电性和机械稳定性增强,这使得钠离子在循环过程中能够轻松、高度可逆地嵌入和脱出。此外,具有表面电容反应性纳的米级SiOC壳提供了一条导电通道,防止电极/电解质界面发生不利的副反应,并作为结构增强缓冲层抵御严重的体积膨胀问题。结果,N-MoS₂/C@SiOC复合材料表现出高可逆容量(540.7 mAh g)、高容量保持率(200次循环后>100%)以及高达10 A g的优异倍率性能。本研究中开发的简单分级核壳设计策略可用于制备高性能金属硫化物负极以及用于储能应用的其他高容量负极材料。