Suppr超能文献

深度学习在炎症性皮肤病皮肤层分割中的应用。

Deep learning approach to skin layers segmentation in inflammatory dermatoses.

机构信息

Faculty of Biomedical Engineering, Silesian University of Technology, Roosevelta 40, 41-800 Zabrze, Poland.

Faculty of Biomedical Engineering, Silesian University of Technology, Roosevelta 40, 41-800 Zabrze, Poland.

出版信息

Ultrasonics. 2021 Jul;114:106412. doi: 10.1016/j.ultras.2021.106412. Epub 2021 Mar 21.

Abstract

Monitoring skin layers with medical imaging is critical to diagnosing and treating patients with chronic inflammatory skin diseases. The high-frequency ultrasound (HFUS) makes it possible to monitor skin condition in different dermatoses. Accurate and reliable segmentation of skin layers in patients with atopic dermatitis or psoriasis enables the assessment of the treatment effect by the layer thickness measurements. The epidermis and the subepidermal low echogenic band (SLEB) are the most important for further diagnosis since their appearance is an indicator of different skin problems. In medical practice, the analysis, including segmentation, is usually performed manually by the physician with all drawbacks of such an approach, e.g., extensive time consumption and lack of repeatability. Recently, HFUS becomes common in dermatological practice, yet it is barely supported by the development of automated analysis tools. To meet the need for skin layer segmentation and measurement, we developed an automated segmentation method of both epidermis and SLEB layers. It consists of a fuzzy c-means clustering-based preprocessing step followed by a U-shaped convolutional neural network. The network employs batch normalization layers adjusting and scaling the activation to make the segmentation more robust. The obtained segmentation results are verified and compared to the current state-of-the-art methods addressing the skin layer segmentation. The obtained Dice coefficient equal to 0.87 and 0.83 for the epidermis and SLEB, respectively, proves the developed framework's efficiency, outperforming the other approaches.

摘要

利用医学成像监测皮肤层对于诊断和治疗慢性炎症性皮肤病患者至关重要。高频超声(HFUS)使得监测不同皮肤病患者的皮肤状况成为可能。对特应性皮炎或银屑病患者的皮肤层进行准确可靠的分割,能够通过层厚测量评估治疗效果。表皮和皮下低回声带(SLEB)对于进一步诊断最为重要,因为它们的出现是不同皮肤问题的指标。在医学实践中,分析(包括分割)通常由医生手动进行,但这种方法存在许多缺点,例如耗费大量时间且缺乏可重复性。最近,HFUS 在皮肤科实践中变得越来越普遍,但自动化分析工具的发展几乎没有得到支持。为了满足皮肤层分割和测量的需求,我们开发了一种自动分割表皮和 SLEB 层的方法。它由基于模糊 C 均值聚类的预处理步骤和 U 形卷积神经网络组成。该网络采用批量归一化层调整和缩放激活,使分割更加健壮。分割结果经过验证,并与目前解决皮肤层分割问题的最先进方法进行了比较。获得的表皮和 SLEB 的 Dice 系数分别为 0.87 和 0.83,证明了所开发框架的效率,优于其他方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验