Suppr超能文献

拉科格拉姆:一种用于诊断阿尔茨海默病的新型脑电图工具。

Lacsogram: A New EEG Tool to Diagnose Alzheimer's Disease.

出版信息

IEEE J Biomed Health Inform. 2021 Sep;25(9):3384-3395. doi: 10.1109/JBHI.2021.3069789. Epub 2021 Sep 3.

Abstract

This work proposes the application of a new electroencephalogram (EEG) signal processing tool - the lacsogram - to characterize the Alzheimer's disease (AD) activity and to assist on its diagnosis at different stages: Mild Cognitive Impairment (MCI), Mild and Moderate AD (ADM) and Advanced AD (ADA). Statistical analyzes are performed to lacstral distances between conventional EEG subbands to find measures capable of discriminating AD in all stages and characterizing the AD activity in each electrode. Cepstral distances are used for comparison. Comparing all AD stages and Controls (C), the most important significances are the lacstral distances between subbands θ and α ( p = 0.0014 0.05). The topographic maps show significant differences in parietal, temporal and frontal regions as AD progresses. Machine learning models with a leave-one-out cross-validation process are applied to lacstral/cepstral distances to develop an automatic method for diagnosing AD. The following classification accuracies are obtained with an artificial neural network: 95.55% for All vs All, 98.06% for C vs MCI, 95.99% for C vs ADM, 93.85% for MCI vs ADM-ADA. In C vs MCI, C vs ADM and MCI vs ADM-ADA, the proposed method outperforms the state-of-art methods by 5%, 1%, and 2%, respectively. In All vs All, it outperforms the state-of-art EEG and non-EEG methods by 6% and 2%, respectively. These results indicate that the proposed method represents an improvement in diagnosing AD.

摘要

这项工作提出了一种新的脑电图(EEG)信号处理工具——lacsogram,用于表征阿尔茨海默病(AD)的活动,并在不同阶段辅助诊断:轻度认知障碍(MCI)、轻度和中度 AD(ADM)以及晚期 AD(ADA)。进行了统计分析,以比较常规 EEG 子带之间的 lacstral 距离,寻找能够在所有阶段区分 AD 并在每个电极上表征 AD 活动的度量标准。还使用 cepstral 距离进行比较。将所有 AD 阶段与对照组(C)进行比较,最重要的显著性差异是θ和α子带之间的 lacstral 距离(p = 0.0014 < 0.05)。随着 AD 的进展,拓扑图显示顶叶、颞叶和额叶区域存在显著差异。应用具有留一交叉验证过程的机器学习模型对 lacstral/cepstral 距离进行分析,以开发一种自动诊断 AD 的方法。使用人工神经网络获得以下分类准确率:All vs All 为 95.55%,C vs MCI 为 98.06%,C vs ADM 为 95.99%,MCI vs ADM-ADA 为 93.85%。在 C vs MCI、C vs ADM 和 MCI vs ADM-ADA 中,该方法的性能分别优于 5%、1%和 2%。在 All vs All 中,该方法优于 EEG 和非 EEG 方法,分别优于 6%和 2%。这些结果表明,所提出的方法在诊断 AD 方面代表了一种改进。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验