Ehteshamzad Sharareh
Department of Biomedical Engineering, Hygiene Faculty, Medical Branch, Islamic Azad University, Tehran, Iran.
J Alzheimers Dis Rep. 2024 Aug 20;8(1):1153-1169. doi: 10.3233/ADR-230159. eCollection 2024.
As the prevalence of Alzheimer's disease (AD) grows with an aging population, the need for early diagnosis has led to increased focus on electroencephalography (EEG) as a non-invasive diagnostic tool.
This review assesses advancements in EEG analysis, including the application of machine learning, for detecting AD from 2000 to 2023.
Following PRISMA guidelines, a search across major databases resulted in 25 studies that met the inclusion criteria, focusing on EEG's application in AD diagnosis and the use of novel signal processing and machine learning techniques.
Progress in EEG analysis has shown promise for early AD identification, with techniques like Hjorth parameters and signal compressibility enhancing detection capabilities. Machine learning has improved the precision of differential diagnosis between AD and mild cognitive impairment. However, challenges in standardizing EEG methodologies and data privacy remain.
EEG stands out as a valuable tool for early AD detection, with the potential to integrate into multimodal diagnostic approaches. Future research should aim to standardize EEG procedures and explore collaborative, privacy-preserving research methods.
随着阿尔茨海默病(AD)的患病率随着人口老龄化而上升,早期诊断的需求促使人们越来越关注将脑电图(EEG)作为一种非侵入性诊断工具。
本综述评估了2000年至2023年期间脑电图分析(包括机器学习的应用)在检测AD方面的进展。
按照PRISMA指南,在各大数据库中进行检索,得到25项符合纳入标准的研究,重点关注脑电图在AD诊断中的应用以及新型信号处理和机器学习技术的使用。
脑电图分析的进展显示出早期识别AD的前景,诸如 Hjorth参数和信号可压缩性等技术提高了检测能力。机器学习提高了AD与轻度认知障碍鉴别诊断的准确性。然而,脑电图方法标准化和数据隐私方面仍存在挑战。
脑电图是早期AD检测的一种有价值的工具,有可能融入多模态诊断方法。未来的研究应致力于脑电图程序的标准化,并探索协作性、保护隐私的研究方法。