Institut de Biomécanique Humaine Georges Charpak, Arts et Métiers ParisTech, Paris, France.
Service de médecine physique et de réadaptation, Hôpital d'Instruction des Armées Percy, Clamart, France.
Proc Inst Mech Eng H. 2021 Jul;235(7):762-769. doi: 10.1177/09544119211006523. Epub 2021 Mar 30.
In case of transtibial amputation, the deficit resulting from the loss of the lower limb can be partly compensated with a prosthetic foot and adapted rehabilitation. New prosthetic feet have been developed for transtibial amputees to mimic ankle adaptability to varying terrain. Among them, Microprocessor Prosthetic Ankles (MPA) have a microprocessor to control an electric or a hydraulic actuator to adapt ankle kinematics in stairs and slopes. The objective is to investigate parameters extracted from the moment-angle curve (MAC) and use them to compare 3 MPA during level and slope locomotion against energy storing and return (ESR) foot. Five persons with lower limb transtibial amputation successively fitted with 3 MPA (Propriofoot™, Elan™, Meridium™) compared to their ESR foot. The participants had 2 weeks of adaptation before data acquisition and then a 3 week wash-out period. Range of motion, equilibrium point, hysteresis, late stance energy released, and quasi-stiffness were computed on level ground and 12% slope (upward and downward) thanks to the MAC at the ankle. The study shows the relevance of MAC parameters to evaluate the behavior of MPA. In particular, compared to ESR, all MPA tested in the present study demonstrated a better angle adaptation between walking conditions but a decrease of available energy for the propulsion. Among MPA, main results were: (i) for the Propriofoot™: an adaptation of the ankle angle without modification of the pattern of the MAC (ii) for the Elan™: a limited adaptation of the range of motion but a modification of the energy released (iii) for the Meridium™, the highest adaptation of the range of motion but the lowest available energy of propulsion. One of the main findings of the research is to show and quantify the relationship between range of motion and energy available when using different prosthetic feet in different walking conditions.
在小腿截肢的情况下,通过假肢脚和适应性康复,可以部分补偿下肢丧失带来的缺陷。已经为小腿截肢者开发了新的假肢脚,以模拟脚踝适应不同地形的能力。其中,微处理器假肢踝关节(MPA)具有微处理器,可控制电动或液压执行器,以适应楼梯和斜坡上的踝关节运动学。目的是研究从力矩-角度曲线(MAC)中提取的参数,并将其用于比较 3 种 MPA 在水平和斜坡运动时的储能和回弹(ESR)脚。5 名小腿截肢者成功适配了 3 种 MPA(PropriofootTM、ElanTM、MeridiumTM),并与他们的 ESR 脚进行了比较。参与者在数据采集前适应了 2 周,然后是 3 周的洗脱期。通过在踝关节处的 MAC,在水平地面和 12%坡度(向上和向下)上计算了运动范围、平衡点、滞后、后期站立能量释放和准刚度。研究表明,MAC 参数与评估 MPA 行为具有相关性。特别是与 ESR 相比,本研究中测试的所有 MPA 都在行走条件下表现出更好的角度适应性,但推进的可用能量减少。在 MPA 中,主要结果如下:(i)对于 PropriofootTM:踝关节角度的适应性,而 MAC 模式没有改变;(ii)对于 ElanTM:运动范围的有限适应性,但释放的能量发生变化;(iii)对于 MeridiumTM,运动范围的适应性最高,但推进的可用能量最低。研究的主要发现之一是展示和量化在不同行走条件下使用不同假肢脚时运动范围和可用能量之间的关系。