Suppr超能文献

一种基于逆流反应器概念的用于新冠病毒热灭活的杀病毒口罩。

A virucidal face mask based on the reverse-flow reactor concept for thermal inactivation of SARS-CoV-2.

作者信息

Faucher Samuel, Lundberg Daniel James, Liang Xinyao Anna, Jin Xiaojia, Phillips Rosalie, Parviz Dorsa, Buongiorno Jacopo, Strano Michael S

机构信息

Department of Chemical Engineering Massachusetts Institute of Technology Cambridge Massachusetts USA.

Department of Nuclear Science and Engineering Massachusetts Institute of Technology Cambridge Massachusetts USA.

出版信息

AIChE J. 2021 Jun;67(6):e17250. doi: 10.1002/aic.17250. Epub 2021 Mar 14.

Abstract

While facial coverings reduce the spread of SARS-CoV-2 by viral filtration, masks capable of viral inactivation by heating can provide a complementary method to limit transmission. Inspired by reverse-flow chemical reactors, we introduce a new virucidal face mask concept driven by the oscillatory flow of human breath. The governing heat and mass transport equations are solved to evaluate virus and CO transport. Given limits imposed by the kinetics of SARS-CoV-2 thermal inactivation, human breath, safety, and comfort, heated masks may inactivate SARS-CoV-2 to medical-grade sterility. We detail one design, with a volume of 300 ml at 90°C that achieves a 3-log reduction in viral load with minimal impedance within the mask mesh, with partition coefficient around 2. This is the first quantitative analysis of virucidal thermal inactivation within a protective face mask, and addresses a pressing need for new approaches for personal protective equipment during a global pandemic.

摘要

虽然面部覆盖物通过病毒过滤减少了SARS-CoV-2的传播,但能够通过加热使病毒失活的口罩可以提供一种补充方法来限制传播。受逆流化学反应器的启发,我们引入了一种由人类呼吸的振荡流驱动的新型杀病毒口罩概念。求解了控制热和质量传输的方程,以评估病毒和一氧化碳的传输。考虑到SARS-CoV-2热灭活动力学、人类呼吸、安全性和舒适性所施加的限制,加热口罩可能会将SARS-CoV-2灭活至医疗级无菌状态。我们详细介绍了一种设计,在90°C时体积为300毫升,在口罩网眼内以最小的阻抗实现病毒载量降低3个对数,分配系数约为2。这是对防护口罩内杀病毒热灭活的首次定量分析,满足了全球大流行期间对个人防护装备新方法的迫切需求。

相似文献

1
A virucidal face mask based on the reverse-flow reactor concept for thermal inactivation of SARS-CoV-2.
AIChE J. 2021 Jun;67(6):e17250. doi: 10.1002/aic.17250. Epub 2021 Mar 14.
3
Application of Copper Iodide Nanoparticle-Doped Film and Fabric To Inactivate SARS-CoV-2 via the Virucidal Activity of Cuprous Ions (Cu).
Appl Environ Microbiol. 2021 Nov 24;87(24):e0182421. doi: 10.1128/AEM.01824-21. Epub 2021 Oct 6.
8
Practices and Perceptions of Face Mask Use in a Pediatric Health System During the COVID-19 Pandemic.
Respir Care. 2021 Jul;66(7):1096-1104. doi: 10.4187/respcare.08944. Epub 2021 May 25.
9
SARS-CoV-2 in environmental perspective: Occurrence, persistence, surveillance, inactivation and challenges.
Chem Eng J. 2021 Feb 1;405:126893. doi: 10.1016/j.cej.2020.126893. Epub 2020 Sep 4.
10
Facial Flap Necrosis From COVID-19 Face Mask Precautions.
J Craniofac Surg. 2022 Sep 1;33(6):1840-1842. doi: 10.1097/SCS.0000000000008587. Epub 2022 Mar 9.

引用本文的文献

1
Rapid In Situ Thermal Decontamination of Wearable Composite Textile Materials.
ACS Appl Mater Interfaces. 2023 Sep 20;15(37):44521-44532. doi: 10.1021/acsami.3c09063. Epub 2023 Sep 11.
2
Portable Heating and Temperature-Monitoring System with a Textile Heater Embroidered on the Facemask.
ACS Omega. 2022 Dec 7;7(50):47214-47224. doi: 10.1021/acsomega.2c06431. eCollection 2022 Dec 20.
3
Polymer Additives to Personal Protective Equipment can Inactivate Pathogens.
Ann Biomed Eng. 2023 Apr;51(4):833-845. doi: 10.1007/s10439-022-03100-1. Epub 2022 Oct 15.
4
Virucidal and biodegradable specialty cellulose nonwovens as personal protective equipment against COVID-19 pandemic.
J Adv Res. 2022 Jul;39:147-156. doi: 10.1016/j.jare.2021.11.002. Epub 2021 Nov 9.
5
Electrospun nanofiber-based respiratory face masks-a review.
Emergent Mater. 2022;5(2):261-278. doi: 10.1007/s42247-022-00350-6. Epub 2022 Jan 25.
6
What do masks mask? A study on transdermal CO monitoring.
Med Eng Phys. 2021 Dec;98:50-56. doi: 10.1016/j.medengphy.2021.10.013. Epub 2021 Oct 27.
7
Challenges and Controversies in COVID-19: Masking the General Population may Attenuate This Pandemic's Outbreak.
Front Public Health. 2021 Sep 8;9:643991. doi: 10.3389/fpubh.2021.643991. eCollection 2021.
8
Materials in advanced design of personal protective equipment: a review.
Mater Today Adv. 2021 Dec;12:100171. doi: 10.1016/j.mtadv.2021.100171. Epub 2021 Sep 8.
9
A review of methods to reduce the probability of the airborne spread of COVID-19 in ventilation systems and enclosed spaces.
Environ Res. 2022 Jan;203:111765. doi: 10.1016/j.envres.2021.111765. Epub 2021 Jul 28.

本文引用的文献

1
Noble-gas-infused neoprene closed-cell foams achieving ultra-low thermal conductivity fabrics.
RSC Adv. 2018 Jun 18;8(38):21389-21398. doi: 10.1039/c8ra04037k. eCollection 2018 Jun 8.
2
Sanitizing agents for virus inactivation and disinfection.
View (Beijing). 2020 Jun;1(2):e16. doi: 10.1002/viw2.16. Epub 2020 May 24.
3
An evidence review of face masks against COVID-19.
Proc Natl Acad Sci U S A. 2021 Jan 26;118(4). doi: 10.1073/pnas.2014564118.
4
Low-cost measurement of face mask efficacy for filtering expelled droplets during speech.
Sci Adv. 2020 Sep 2;6(36). doi: 10.1126/sciadv.abd3083. Print 2020 Sep.
5
Stability of SARS-CoV-2 in different environmental conditions.
Lancet Microbe. 2020 May;1(1):e10. doi: 10.1016/S2666-5247(20)30003-3. Epub 2020 Apr 2.
6
A predictive model of the temperature-dependent inactivation of coronaviruses.
Appl Phys Lett. 2020 Aug 10;117(6):060601. doi: 10.1063/5.0020782.
7
Selection of parameters for thermal coronavirus inactivation - a data-based recommendation.
GMS Hyg Infect Control. 2020 Jul 13;15:Doc16. doi: 10.3205/dgkh000351. eCollection 2020.
8
Using heat to kill SARS-CoV-2.
Rev Med Virol. 2020 Sep;30(5):e2115. doi: 10.1002/rmv.2115. Epub 2020 Jul 2.
9
Far-UVC light (222 nm) efficiently and safely inactivates airborne human coronaviruses.
Sci Rep. 2020 Jun 24;10(1):10285. doi: 10.1038/s41598-020-67211-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验