Dillon Tom, Ozturk Caglar, Mendez Keegan, Rosalia Luca, Gollob Samuel Dutra, Kempf Katharina, Roche Ellen Tunney
Department of Mechanical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA.
Institute for Medical Engineering and Science Massachusetts Institute of Technology Cambridge MA 02139 USA.
Adv Nanobiomed Res. 2021 Dec;1(12):2000112. doi: 10.1002/anbr.202000112. Epub 2021 Nov 14.
Herein, the computational modeling of a fluidic oscillator for use in an educational respiratory simulator apparatus is presented. The design provides realistic visualization and tuning of respiratory biomechanics using a part that is (i) inexpensive, (ii) easily manufactured without the need for specialized equipment, (iii) simple to assemble and maintain, (iv) does not require any electronics, and (v) has no moving components that could be prone to failure. A computational fluid dynamics (CFD) model is used to assess flow characteristics of the system, and a prototype is developed and tested with a commercial benchtop respiratory simulator. The simulations show clinically relevant periodic oscillation with outlet pressures in the range of 8-20 cmHO and end-user-tunable frequencies in the range of 3-6 s (respiratory rate [RR] of 10-20 breaths per minute). The fluidic oscillator presented here functions at physiologically relevant pressures and frequencies, demonstrating potential as a low cost, hands-on, and pedagogical tool. The model will serve as a realistic model for educating Science, Technology, Engineering, and Mathematics (STEM) students on the relationship between flow, pressure, compliance, and volume in respiratory biomechanics while simultaneously exposing them to basic manufacturing techniques.
本文介绍了一种用于教育呼吸模拟器设备的射流振荡器的计算模型。该设计使用一种部件实现了对呼吸生物力学的逼真可视化和调节,该部件具有以下特点:(i)成本低廉;(ii)无需专用设备即可轻松制造;(iii)组装和维护简单;(iv)不需要任何电子设备;(v)没有可能容易出现故障的运动部件。使用计算流体动力学(CFD)模型来评估系统的流动特性,并开发了一个原型,并与商用台式呼吸模拟器一起进行测试。模拟结果显示出具有临床相关性的周期性振荡,出口压力范围为8 - 20 cmH₂O,最终用户可调节频率范围为3 - 6秒(呼吸频率[RR]为每分钟10 - 20次呼吸)。这里介绍的射流振荡器在生理相关的压力和频率下运行,展示了其作为低成本、实践型和教学工具的潜力。该模型将作为一个逼真的模型,用于教育科学、技术、工程和数学(STEM)专业的学生关于呼吸生物力学中流量、压力、顺应性和体积之间的关系,同时让他们接触基本的制造技术。