Suppr超能文献

基于 Kendall 形状空间理论的卡通表情外推。

Caricature Expression Extrapolation Based on Kendall Shape Space Theory.

出版信息

IEEE Comput Graph Appl. 2021 May-Jun;41(3):71-84. doi: 10.1109/MCG.2021.3069948. Epub 2021 May 7.

Abstract

Facial expression editing plays a fundamental role in facial expression generation and has been widely applied in modern film productions and computer games. While the existing 2-D caricature facial expression editing methods are mostly realized by expression interpolation from the original image to the target image, expression extrapolation has rarely been studied before. In this article, we propose a novel expression extrapolation method for caricature facial expressions based on the Kendall shape space, in which the key idea is to introduce a representation for the 3-D expression model to remove rigid transformations, such as translation, scaling, and rotation, from the Kendall shape space. Built upon the proposed representation, the 2-D caricature expression extrapolation process can be controlled by the 3-D model reconstructed from the input 2-D caricature image and the exaggerated expressions of the caricature images generated based on the extrapolated expression of a 3-D model that is robust to facial poses in the Kendall shape space; this 3-D model can be calculated with tools such as exponential mapping in Riemannian space. The experimental results demonstrate that our method can effectively and automatically extrapolate facial expressions in caricatures with high consistency and fidelity. In addition, we derive 3-D facial models with diverse expressions and expand the scale of the original FaceWarehouse database. Furthermore, compared with the deep learning method, our approach is based on standard face datasets and avoids the construction of complicated 3-D caricature training sets.

摘要

面部表情编辑在面部表情生成中起着至关重要的作用,已广泛应用于现代电影制作和电脑游戏中。虽然现有的二维卡通表情编辑方法主要通过从原始图像到目标图像的表情插值来实现,但表情外推法之前很少被研究过。在本文中,我们提出了一种基于 Kendall 形状空间的卡通面部表情外推方法,其核心思想是引入一种 3D 表情模型的表示方法,以去除 Kendall 形状空间中的刚性变换,如平移、缩放和旋转。基于所提出的表示方法,二维卡通表情外推过程可以通过从输入二维卡通图像重建的 3D 模型和基于 3D 模型的卡通图像生成的夸张表情来控制,该 3D 模型对 Kendall 形状空间中的面部姿势具有鲁棒性;这个 3D 模型可以通过黎曼空间中的指数映射等工具来计算。实验结果表明,我们的方法可以有效地、自动地对卡通图像中的表情进行高一致性和高保真度的外推。此外,我们推导出了具有多种表情的 3D 面部模型,并扩展了原始 FaceWarehouse 数据库的规模。此外,与深度学习方法相比,我们的方法基于标准人脸数据集,避免了构建复杂的 3D 卡通训练集。

相似文献

1
Caricature Expression Extrapolation Based on Kendall Shape Space Theory.基于 Kendall 形状空间理论的卡通表情外推。
IEEE Comput Graph Appl. 2021 May-Jun;41(3):71-84. doi: 10.1109/MCG.2021.3069948. Epub 2021 May 7.
7
Enhancing images of facial expressions.增强面部表情图像。
Percept Psychophys. 1999 Feb;61(2):259-74. doi: 10.3758/bf03206887.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验