Suppr超能文献

使用特定对象的双路径网络对轴向脊柱图像进行量化。

Quantifying Axial Spine Images Using Object-Specific Bi-Path Network.

出版信息

IEEE J Biomed Health Inform. 2021 Aug;25(8):2978-2987. doi: 10.1109/JBHI.2021.3070235. Epub 2021 Aug 5.

Abstract

Automatic estimation of indices from medical images is the main goal of computer-aided quantification (CADq), which speeds up diagnosis and lightens the workload of radiologists. Deep learning technique is a good choice for implementing CADq. Usually, to acquire high-accuracy quantification, specific network architecture needs to be designed for a given CADq task. In this study, considering that the target organs are the intervertebral disc and the dural sac, we propose an object-specific bi-path network (OSBP-Net) for axial spine image quantification. Each path of the OSBP-Net comprises a shallow feature extraction layer (SFE) and a deep feature extraction sub-network (DFE). The SFEs use different convolution strides because the two target organs have different anatomical sizes. The DFEs use average pooling for downsampling based on the observation that the target organs have lower intensity than the background. In addition, an inter-path dissimilarity constraint is proposed and applied to the output of the SFEs, taking into account that the activated regions in the feature maps of two paths should be different theoretically. An inter-index correlation regularization is introduced and applied to the output of the DFEs based on the observation that the diameter and area of the same object express an approximately linear relation. The prediction results of OSBP-Net are compared to several state-of-the-art machine learning-based CADq methods. The comparison reveals that the proposed methods precede other competing methods extensively, indicating its great potential for spine CADq.

摘要

医学图像中指标的自动估计是计算机辅助定量(CADq)的主要目标,这可以加快诊断速度并减轻放射科医生的工作量。深度学习技术是实现 CADq 的一个不错选择。通常,为了获得高精度的定量结果,需要针对特定的 CADq 任务设计特定的网络架构。在这项研究中,考虑到目标器官是椎间盘和硬脊膜囊,我们提出了一种用于轴向脊柱图像定量的特定对象双路径网络(OSBP-Net)。OSBP-Net 的每条路径都包含一个浅层特征提取层(SFE)和一个深层特征提取子网络(DFE)。SFE 使用不同的卷积步长,因为这两个目标器官具有不同的解剖大小。DFE 使用平均池化进行下采样,这是基于目标器官的强度比背景低的观察结果。此外,还提出了一种路径间不相似性约束,并将其应用于 SFE 的输出,这是因为从理论上讲,两条路径的特征图中的激活区域应该不同。基于相同物体的直径和面积之间表达近似线性关系的观察结果,引入并应用了一种跨指标相关性正则化,将其应用于 DFE 的输出。将 OSBP-Net 的预测结果与几种基于机器学习的最先进 CADq 方法进行了比较。比较结果表明,所提出的方法广泛优于其他竞争方法,这表明其在脊柱 CADq 方面具有巨大的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验