Suppr超能文献

基于流形正则化的级联放大器回归网络直接自动定量测量脊柱

Direct automated quantitative measurement of spine by cascade amplifier regression network with manifold regularization.

机构信息

Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China.

Department of Spinal Surgery, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China.

出版信息

Med Image Anal. 2019 Jul;55:103-115. doi: 10.1016/j.media.2019.04.012. Epub 2019 Apr 22.

Abstract

Automated quantitative measurement of the spine (i.e., multiple indices estimation of heights, widths, areas, and so on for the vertebral body and disc) plays a significant role in clinical spinal disease diagnoses and assessments, such as osteoporosis, intervertebral disc degeneration, and lumbar disc herniation, yet still an unprecedented challenge due to the variety of spine structure and the high dimensionality of indices to be estimated. In this paper, we propose a novel cascade amplifier regression network (CARN) with manifold regularization including local structure-preserved manifold regularization (LSPMR) and adaptive local shape-constrained manifold regularization (ALSCMR), to achieve accurate direct automated multiple indices estimation. The CARN architecture is composed of a cascade amplifier network (CAN) for expressive feature embedding and a linear regression model for multiple indices estimation. The CAN produces an expressive feature embedding by cascade amplifier units (AUs), which are used for selective feature reuse by stimulating effective feature and suppressing redundant feature during propagating feature map between adjacent layers. During training, the LSPMR is employed to obtain discriminative feature embedding by preserving the local geometric structure of the latent feature space similar to the target output manifold. The ALSCMR is utilized to alleviate overfitting and generate realistic estimation by learning the multiple indices distribution. Experiments on T1-weighted MR images of 215 subjects and T2-weighted MR images of 20 subjects show that the proposed approach achieves impressive performance with mean absolute errors of 1.22 ± 1.04 mm and 1.24 ± 1.07 mm for the 30 lumbar spinal indices estimation of the T1-weighted and T2-weighted spinal MR images respectively. The proposed method has great potential in clinical spinal disease diagnoses and assessments.

摘要

自动化的脊柱定量测量(即对椎体和椎间盘的高度、宽度、面积等多个指标进行估计)在临床脊柱疾病诊断和评估中具有重要作用,如骨质疏松症、椎间盘退变和腰椎间盘突出症等,但由于脊柱结构的多样性和需要估计的指标的高维性,这仍然是一个前所未有的挑战。在本文中,我们提出了一种新的级联放大器回归网络(CARN),具有流形正则化,包括局部结构保持流形正则化(LSPMR)和自适应局部形状约束流形正则化(ALSCMR),以实现准确的直接自动化多指标估计。CARN 架构由级联放大器网络(CAN)组成,用于表达特征嵌入,以及用于多指标估计的线性回归模型。CAN 通过级联放大器单元(AU)产生表达特征嵌入,这些单元通过在相邻层之间传播特征图时刺激有效特征和抑制冗余特征来选择性地重用特征。在训练过程中,LSPMR 用于通过保留与目标输出流形相似的潜在特征空间的局部几何结构来获得具有判别力的特征嵌入。ALSCMR 用于通过学习多指标分布来缓解过拟合并生成真实的估计。在 215 名受试者的 T1 加权 MR 图像和 20 名受试者的 T2 加权 MR 图像上的实验表明,所提出的方法在 30 个腰椎脊柱指数估计方面取得了令人印象深刻的性能,T1 加权和 T2 加权脊柱 MR 图像的平均绝对误差分别为 1.22±1.04mm 和 1.24±1.07mm。该方法在临床脊柱疾病诊断和评估中具有很大的应用潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验