Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom; and.
Department of Chemistry, University of Oxford, Oxford, United Kingdom.
J Nucl Med. 2021 Nov;62(11):1537-1544. doi: 10.2967/jnumed.120.251173. Epub 2021 Mar 31.
Imaging of intranuclear epitopes using antibodies tagged to cell-penetrating peptides has great potential given its versatility, specificity, and sensitivity. However, this process is technically challenging because of the location of the target. Previous research has demonstrated a variety of intranuclear epitopes that can be targeted with antibody-based radioimmunoconjugates. Here, we developed a controlled-expression model of nucleus-localized green fluorescent protein (GFP) to interrogate the technical limitations of intranuclear SPECT using radioimmunoconjugates, notably the lower target-abundance detection threshold. We stably transfected the lung adenocarcinoma cell line H1299 with an enhanced GFP (EGFP)-tagged histone 2B (H2B) and generated 4 cell lines expressing increasing levels of GFP. EGFP levels were quantified using Western blot, flow cytometry, and enzyme-linked immunosorbent assay. An anti-GFP antibody (GFP-G1) was modified using dibenzocyclooctyne-N-based strain-promoted azide-alkyne cycloaddition with the cell-penetrating peptide TAT (GRKKRRQRRRPPQGYG), which also includes a nuclear localization sequence, and the metal ion chelator N-Bn-diethylenetriamine pentaacetate (DTPA) to allow radiolabeling with In. Cell uptake of In-GFP-G1-TAT was evaluated across 5 cell clones expressing different levels of H2B-EGFP in vitro. Tumor uptake in xenograft-bearing mice was quantified to determine the smallest amount of target epitope that could be detected using In-GFP-G1-TAT. We generated 4 H1299 cell clones expressing different levels of H2B-EGFP (0-1 million copies per cell, including wild-type H1299 cells). GFP-G1 monoclonal antibody was produced and purified in house, and selective binding to H2B-EGFP was confirmed. The affinity (dissociation constant) of GFP-G1 was determined as 9.1 ± 3.0 nM. GFP-G1 was conjugated to TAT and DTPA. In-GFP-G1-TAT uptake in H2B-EGFP-expressing cell clones correlated linearly with H2B-EGFP expression ( < 0.001). In vivo xenograft studies demonstrated that In-GFP-G1-TAT uptake in tumor tissue correlated linearly with expression of H2B-EGFP ( = 0.004) and suggested a lower target-abundance detection threshold of approximately 240,000 copies per cell. Here, we present a proof-of-concept demonstration that antibody-based imaging of intranuclear targets is capable both of detecting the presence of an epitope of interest with a copy number above 240,000 copies per cell and of determining differences in expression level above this threshold.
使用与穿膜肽偶联的抗体对核内表位进行成像具有很大的潜力,因为它具有多功能性、特异性和敏感性。然而,由于目标的位置,这个过程在技术上具有挑战性。先前的研究已经证明了多种可以用基于抗体的放射性免疫偶联物靶向的核内表位。在这里,我们开发了一种核定位绿色荧光蛋白(GFP)的可控表达模型,以研究使用放射性免疫偶联物进行核内单光子发射计算机断层扫描(SPECT)的技术局限性,特别是较低的靶标丰度检测阈值。我们用增强型 GFP(EGFP)标记的组蛋白 2B(H2B)稳定转染肺腺癌细胞系 H1299,并生成了 4 种表达水平逐渐增加的 GFP 的细胞系。使用 Western blot、流式细胞术和酶联免疫吸附试验定量 EGFP 水平。用二苯并环辛炔-N-基促进的叠氮化物-炔烃环加成反应对 GFP 抗体(GFP-G1)进行修饰,该反应使用穿膜肽 TAT(GRKKRRQRRRPPQGYG),其还包含核定位序列,以及金属离子螯合剂 N-Bn-二乙三胺五乙酸(DTPA),允许用 In 进行放射性标记。在体外评估了在表达不同水平 H2B-EGFP 的 5 个细胞克隆中摄取 In-GFP-G1-TAT 的情况。在携带异种移植物的小鼠中定量肿瘤摄取,以确定使用 In-GFP-G1-TAT 可以检测到的最小靶标表位量。我们生成了 4 种表达不同水平 H2B-EGFP(包括野生型 H1299 细胞在内的每个细胞 0-100 万个拷贝)的 H1299 细胞克隆。在内部生产和纯化 GFP-G1 单克隆抗体,并证实其与 H2B-EGFP 的选择性结合。GFP-G1 的亲和力(解离常数)确定为 9.1 ± 3.0 nM。GFP-G1 与 TAT 和 DTPA 偶联。在表达 H2B-EGFP 的细胞克隆中摄取 In-GFP-G1-TAT 与 H2B-EGFP 表达呈线性相关(<0.001)。体内异种移植研究表明,肿瘤组织中 In-GFP-G1-TAT 的摄取与 H2B-EGFP 的表达呈线性相关(=0.004),并提示靶标丰度检测阈值约为每个细胞 240,000 个拷贝。在这里,我们提出了一个概念验证的演示,表明基于抗体的核内靶标成像不仅能够检测到每个细胞超过 240,000 个拷贝的感兴趣表位的存在,还能够确定高于该阈值的表达水平差异。