Feres Flávio H, Mayer Rafael A, Wehmeier Lukas, Maia Francisco C B, Viana E R, Malachias Angelo, Bechtel Hans A, Klopf J Michael, Eng Lukas M, Kehr Susanne C, González J C, Freitas Raul O, Barcelos Ingrid D
Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil.
Physics Department, Gleb Wataghin Physics Institute, University of Campinas (Unicamp), Campinas, SP, Brazil.
Nat Commun. 2021 Mar 31;12(1):1995. doi: 10.1038/s41467-021-22209-w.
Hyperbolic phonon polaritons have recently attracted considerable attention in nanophotonics mostly due to their intrinsic strong electromagnetic field confinement, ultraslow polariton group velocities, and long lifetimes. Here we introduce tin oxide (SnO) nanobelts as a photonic platform for the transport of surface and volume phonon polaritons in the mid- to far-infrared frequency range. This report brings a comprehensive description of the polaritonic properties of SnO as a nanometer-sized dielectric and also as an engineered material in the form of a waveguide. By combining accelerator-based IR-THz sources (synchrotron and free-electron laser) with s-SNOM, we employed nanoscale far-infrared hyper-spectral-imaging to uncover a Fabry-Perot cavity mechanism in SnO nanobelts via direct detection of phonon-polariton standing waves. Our experimental findings are accurately supported by notable convergence between theory and numerical simulations. Thus, the SnO is confirmed as a natural hyperbolic material with unique photonic properties essential for future applications involving subdiffractional light traffic and detection in the far-infrared range.
双曲线声子极化激元最近在纳米光子学领域引起了相当大的关注,主要是由于其固有的强电磁场限制、超慢极化激元群速度和长寿命。在此,我们介绍氧化锡(SnO)纳米带,作为一种光子平台,用于在中红外到远红外频率范围内传输表面和体声子极化激元。本报告全面描述了SnO作为纳米尺寸电介质以及作为波导形式的工程材料的极化激元特性。通过将基于加速器的红外太赫兹源(同步加速器和自由电子激光)与s-SNOM相结合,我们利用纳米级远红外高光谱成像,通过直接检测声子极化激元驻波,揭示了SnO纳米带中的法布里-珀罗腔机制。我们的实验结果得到了理论和数值模拟之间显著一致性的准确支持。因此,SnO被确认为一种天然的双曲线材料,具有独特的光子特性,对于未来涉及远红外范围内亚衍射光传输和检测的应用至关重要。