Suppr超能文献

基于生成对抗网络的脑成像模态转换方法研究

Research on the Modality Transfer Method of Brain Imaging Based on Generative Adversarial Network.

作者信息

Cheng Dapeng, Qiu Nuan, Zhao Feng, Mao Yanyan, Li Chengnuo

机构信息

School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China.

Shandong Co-Innovation Center of Future Intelligent Computing, Yantai, China.

出版信息

Front Neurosci. 2021 Mar 15;15:655019. doi: 10.3389/fnins.2021.655019. eCollection 2021.

Abstract

Brain imaging technology is an important means to study brain diseases. The commonly used brain imaging technologies are fMRI and EEG. Clinical practice has shown that although fMRI is superior to EEG in observing the anatomical details of some diseases that are difficult to diagnose, its costs are prohibitive. In particular, more and more patients who use metal implants cannot use this technology. In contrast, EEG technology is easier to implement. Therefore, to break through the limitations of fMRI technology, we propose a brain imaging modality transfer framework, namely BMT-GAN, based on a generative adversarial network. The framework introduces a new non-adversarial loss to reduce the perception and style difference between input and output images. It also realizes the conversion from EEG modality data to fMRI modality data and provides comprehensive reference information of EEG and fMRI for radiologists. Finally, a qualitative and quantitative comparison with the existing GAN-based brain imaging modality transfer approaches demonstrates the superiority of our framework.

摘要

脑成像技术是研究脑部疾病的重要手段。常用的脑成像技术是功能磁共振成像(fMRI)和脑电图(EEG)。临床实践表明,虽然功能磁共振成像在观察某些难以诊断疾病的解剖细节方面优于脑电图,但其成本过高。特别是,越来越多使用金属植入物的患者无法使用这项技术。相比之下,脑电图技术更容易实施。因此,为突破功能磁共振成像技术的局限性,我们基于生成对抗网络提出了一种脑成像模态转换框架,即BMT-GAN。该框架引入了一种新的非对抗性损失,以减少输入和输出图像之间的感知和风格差异。它还实现了从脑电图模态数据到功能磁共振成像模态数据的转换,并为放射科医生提供脑电图和功能磁共振成像的综合参考信息。最后,与现有的基于生成对抗网络的脑成像模态转换方法进行的定性和定量比较证明了我们框架的优越性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验