Suppr超能文献

基于模糊卷积神经网络的云及物联网医学图像诊断的安全性与隐私性

Security and Privacy of Cloud- and IoT-Based Medical Image Diagnosis Using Fuzzy Convolutional Neural Network.

作者信息

Deepika J, Rajan C, Senthil T

机构信息

Department of Information Technology, Bannari Amman Institute of Technology, Sathyamangalam, Erode, Tamilnadu, India.

Department of Information Technology, K S Rangasamy College of Technology, Tiruchengode, Namakkal, Tamilnadu, India.

出版信息

Comput Intell Neurosci. 2021 Mar 18;2021:6615411. doi: 10.1155/2021/6615411. eCollection 2021.

Abstract

In recent times, security in cloud computing has become a significant part in healthcare services specifically in medical data storage and disease prediction. A large volume of data are produced in the healthcare environment day by day due to the development in the medical devices. Thus, cloud computing technology is utilised for storing, processing, and handling these large volumes of data in a highly secured manner from various attacks. This paper focuses on disease classification by utilising image processing with secured cloud computing environment using an extended zigzag image encryption scheme possessing a greater tolerance to different data attacks. Secondly, a fuzzy convolutional neural network (FCNN) algorithm is proposed for effective classification of images. The decrypted images are used for classification of cancer levels with different layers of training. After classification, the results are transferred to the concern doctors and patients for further treatment process. Here, the experimental process is carried out by utilising the standard dataset. The results from the experiment concluded that the proposed algorithm shows better performance than the other existing algorithms and can be effectively utilised for the medical image diagnosis.

摘要

近年来,云计算安全已成为医疗保健服务中的重要组成部分,特别是在医疗数据存储和疾病预测方面。由于医疗设备的发展,医疗环境中每天都会产生大量数据。因此,云计算技术被用于以高度安全的方式存储、处理和管理这些大量数据,防止各种攻击。本文重点研究在具有安全云计算环境下利用图像处理进行疾病分类,采用一种对不同数据攻击具有更高耐受性的扩展之字形图像加密方案。其次,提出了一种模糊卷积神经网络(FCNN)算法用于图像的有效分类。解密后的图像用于不同训练层的癌症级别分类。分类后,结果被传送给相关医生和患者以进行进一步的治疗过程。在此,实验过程利用标准数据集进行。实验结果表明,所提出的算法比其他现有算法表现更好,可有效用于医学图像诊断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d36e/7997756/fb9e6ce81aeb/CIN2021-6615411.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验