Suppr超能文献

基于卷积受限玻尔兹曼机的生成与判别式表示学习在肺部 CT 分析中的应用

Combining Generative and Discriminative Representation Learning for Lung CT Analysis With Convolutional Restricted Boltzmann Machines.

出版信息

IEEE Trans Med Imaging. 2016 May;35(5):1262-1272. doi: 10.1109/TMI.2016.2526687. Epub 2016 Feb 8.

Abstract

The choice of features greatly influences the performance of a tissue classification system. Despite this, many systems are built with standard, predefined filter banks that are not optimized for that particular application. Representation learning methods such as restricted Boltzmann machines may outperform these standard filter banks because they learn a feature description directly from the training data. Like many other representation learning methods, restricted Boltzmann machines are unsupervised and are trained with a generative learning objective; this allows them to learn representations from unlabeled data, but does not necessarily produce features that are optimal for classification. In this paper we propose the convolutional classification restricted Boltzmann machine, which combines a generative and a discriminative learning objective. This allows it to learn filters that are good both for describing the training data and for classification. We present experiments with feature learning for lung texture classification and airway detection in CT images. In both applications, a combination of learning objectives outperformed purely discriminative or generative learning, increasing, for instance, the lung tissue classification accuracy by 1 to 8 percentage points. This shows that discriminative learning can help an otherwise unsupervised feature learner to learn filters that are optimized for classification.

摘要

特征的选择对组织分类系统的性能有很大的影响。尽管如此,许多系统还是使用标准的、预先定义的滤波器组构建的,这些滤波器组并没有针对特定的应用进行优化。受限玻尔兹曼机等表示学习方法可能比这些标准滤波器组表现更好,因为它们可以直接从训练数据中学习特征描述。与许多其他表示学习方法一样,受限玻尔兹曼机是无监督的,并且使用生成学习目标进行训练;这允许它们从未标记的数据中学习表示,但不一定产生最适合分类的特征。在本文中,我们提出了卷积分类受限玻尔兹曼机,它结合了生成和判别学习目标。这使得它可以学习既适合描述训练数据又适合分类的滤波器。我们在 CT 图像中的肺纹理分类和气道检测中进行了特征学习实验。在这两个应用中,学习目标的组合都优于纯粹的判别或生成学习,例如,将肺组织分类精度提高了 1 到 8 个百分点。这表明判别学习可以帮助原本无监督的特征学习器学习针对分类优化的滤波器。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验