Suppr超能文献

人工智能应用于早期胃癌内镜诊断准确性的当前证据与未来展望:一项系统评价与Meta分析

Current Evidence and Future Perspective of Accuracy of Artificial Intelligence Application for Early Gastric Cancer Diagnosis With Endoscopy: A Systematic and Meta-Analysis.

作者信息

Jiang Kailin, Jiang Xiaotao, Pan Jinglin, Wen Yi, Huang Yuanchen, Weng Senhui, Lan Shaoyang, Nie Kechao, Zheng Zhihua, Ji Shuling, Liu Peng, Li Peiwu, Liu Fengbin

机构信息

First College of Clinic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.

Department of Spleen-Stomach and Liver Diseases, Traditional Chinese Medicine Hospital of Hainan Province Affiliated to Guangzhou University of Chinese Medicine, Haikou, China.

出版信息

Front Med (Lausanne). 2021 Mar 15;8:629080. doi: 10.3389/fmed.2021.629080. eCollection 2021.

Abstract

Gastric cancer is the common malignancies from cancer worldwide. Endoscopy is currently the most effective method to detect early gastric cancer (EGC). However, endoscopy is not infallible and EGC can be missed during endoscopy. Artificial intelligence (AI)-assisted endoscopic diagnosis is a recent hot spot of research. We aimed to quantify the diagnostic value of AI-assisted endoscopy in diagnosing EGC. The PubMed, MEDLINE, Embase and the Cochrane Library Databases were searched for articles on AI-assisted endoscopy application in EGC diagnosis. The pooled sensitivity, specificity, and area under the curve (AUC) were calculated, and the endoscopists' diagnostic value was evaluated for comparison. The subgroup was set according to endoscopy modality, and number of training images. A funnel plot was delineated to estimate the publication bias. 16 studies were included in this study. We indicated that the application of AI in endoscopic detection of EGC achieved an AUC of 0.96 (95% CI, 0.94-0.97), a sensitivity of 86% (95% CI, 77-92%), and a specificity of 93% (95% CI, 89-96%). In AI-assisted EGC depth diagnosis, the AUC was 0.82(95% CI, 0.78-0.85), and the pooled sensitivity and specificity was 0.72(95% CI, 0.58-0.82) and 0.79(95% CI, 0.56-0.92). The funnel plot showed no publication bias. The AI applications for EGC diagnosis seemed to be more accurate than the endoscopists. AI assisted EGC diagnosis was more accurate than experts. More prospective studies are needed to make AI-aided EGC diagnosis universal in clinical practice.

摘要

胃癌是全球常见的恶性肿瘤。内镜检查是目前检测早期胃癌(EGC)最有效的方法。然而,内镜检查并非万无一失,EGC在内镜检查过程中可能会被漏诊。人工智能(AI)辅助内镜诊断是近年来的研究热点。我们旨在量化AI辅助内镜检查在诊断EGC中的诊断价值。检索了PubMed、MEDLINE、Embase和Cochrane图书馆数据库中有关AI辅助内镜检查在EGC诊断中应用的文章。计算合并敏感性、特异性和曲线下面积(AUC),并评估内镜医师的诊断价值以作比较。根据内镜检查方式和训练图像数量设置亚组。绘制漏斗图以估计发表偏倚。本研究纳入了16项研究。我们发现,AI在内镜检测EGC中的应用AUC为0.96(95%CI,0.94 - 0.97),敏感性为86%(95%CI,77 - 92%),特异性为93%(95%CI,89 - 96%)。在AI辅助EGC深度诊断中,AUC为0.82(95%CI,0.78 - 0.85),合并敏感性和特异性分别为0.72(95%CI,0.58 - 0.82)和0.79(95%CI,0.56 - 0.92)。漏斗图显示无发表偏倚。AI在EGC诊断中的应用似乎比内镜医师更准确。AI辅助EGC诊断比专家更准确。需要更多的前瞻性研究以使AI辅助EGC诊断在临床实践中普及。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f26f/8005567/a22c288d5bc6/fmed-08-629080-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验