Suppr超能文献

人工智能辅助内镜检查对慢性萎缩性胃炎的诊断价值:一项系统评价与Meta分析

Diagnostic value of artificial intelligence-assisted endoscopy for chronic atrophic gastritis: a systematic review and meta-analysis.

作者信息

Shi Yanting, Wei Ning, Wang Kunhong, Tao Tao, Yu Feng, Lv Bing

机构信息

Department of Gastroenterology, Zibo Central Hospital, Zibo, Shandong, China.

School of Computer Science and Technology, Shandong University of Technology, Zibo, Shandong, China.

出版信息

Front Med (Lausanne). 2023 May 2;10:1134980. doi: 10.3389/fmed.2023.1134980. eCollection 2023.

Abstract

BACKGROUND AND AIMS

The diagnosis of chronic atrophic gastritis (CAG) under normal white-light endoscopy depends on the endoscopist's experience and is not ideal. Artificial intelligence (AI) is increasingly used to diagnose diseases with good results. This review aimed to evaluate the accuracy of AI-assisted diagnosis of CAG through a meta-analysis.

METHODS

We conducted a comprehensive literature search of four databases: PubMed, Embase, Web of Science, and the Cochrane Library. Studies published by November 21, 2022, on AI diagnosis CAG with endoscopic images or videos were included. We assessed the diagnostic performance of AI using meta-analysis, explored the sources of heterogeneity through subgroup analysis and meta-regression, and compared the accuracy of AI and endoscopists in diagnosing CAG.

RESULTS

Eight studies that included a total of 25,216 patients of interest, 84,678 image training set images, and 10,937 test set images/videos were included. The results of the meta-analysis showed that the sensitivity of AI in identifying CAG was 94% (95% confidence interval [CI]: 0.88-0.97, I = 96.2%), the specificity was 96% (95% CI: 0.88-0.98, I = 98.04%), and the area under the summary receiver operating characteristic curve was 0.98 (95% CI: 0.96-0.99). The accuracy of AI in diagnosing CAG was significantly higher than that of endoscopists.

CONCLUSIONS

AI-assisted diagnosis of CAG in endoscopy has high accuracy and clinical diagnostic value.

SYSTEMATIC REVIEW REGISTRATION

http://www.crd.york.ac.uk/PROSPERO/, identifier: CRD42023391853.

摘要

背景与目的

在普通白光内镜下,慢性萎缩性胃炎(CAG)的诊断依赖于内镜医师的经验,效果并不理想。人工智能(AI)越来越多地用于疾病诊断,且效果良好。本综述旨在通过荟萃分析评估AI辅助诊断CAG的准确性。

方法

我们对四个数据库进行了全面的文献检索:PubMed、Embase、Web of Science和Cochrane图书馆。纳入2022年11月21日前发表的关于使用内镜图像或视频进行AI诊断CAG的研究。我们使用荟萃分析评估AI的诊断性能,通过亚组分析和荟萃回归探索异质性来源,并比较AI和内镜医师在诊断CAG方面的准确性。

结果

纳入八项研究,共涉及25216例感兴趣的患者、84678张图像训练集图像以及10937张测试集图像/视频。荟萃分析结果显示,AI识别CAG的敏感性为94%(95%置信区间[CI]:0.88 - 0.97,I² = 96.2%),特异性为96%(95% CI:0.88 - 0.98,I² = 98.04%),汇总受试者工作特征曲线下面积为0.98(95% CI:0.96 - 0.99)。AI诊断CAG的准确性显著高于内镜医师。

结论

内镜检查中AI辅助诊断CAG具有较高的准确性和临床诊断价值。

系统评价注册

http://www.crd.york.ac.uk/PROSPERO/,标识符:CRD42023391853。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76ef/10185804/f7f2f797d06d/fmed-10-1134980-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验