文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人工智能辅助检测内镜图像中食管癌和肿瘤的准确性:系统评价和荟萃分析。

Accuracy of artificial intelligence-assisted detection of esophageal cancer and neoplasms on endoscopic images: A systematic review and meta-analysis.

机构信息

Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.

National Clinical Research Center for Digestive Diseases, Beijing, China.

出版信息

J Dig Dis. 2021 Jun;22(6):318-328. doi: 10.1111/1751-2980.12992.


DOI:10.1111/1751-2980.12992
PMID:33871932
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8361665/
Abstract

OBJECTIVE: To investigate systematically previous studies on the accuracy of artificial intelligence (AI)-assisted diagnostic models in detecting esophageal neoplasms on endoscopic images so as to provide scientific evidence for the effectiveness of these models. METHODS: A literature search was conducted on the PubMed, EMBASE and Cochrane Library databases for studies on the AI-assisted detection of esophageal neoplasms on endoscopic images published up to December 2020. A bivariate mixed-effects regression model was used to calculate the pooled diagnostic efficacy of AI-assisted system. Subgroup analyses and meta-regression analyses were performed to explore the sources of heterogeneity. The effectiveness of AI-assisted models was also compared with that of the endoscopists. RESULTS: Sixteen studies were included in the systematic review and meta-analysis. The pooled sensitivity, specificity, positive and negative likelihood ratios, diagnostic odds ratio and area under the summary receiver operating characteristic curve regarding AI-assisted detection of esophageal neoplasms were 94% (95% confidence interval [CI] 92%-96%), 85% (95% CI 73%-92%), 6.40 (95% CI 3.38-12.11), 0.06 (95% CI 0.04-0.10), 98.88 (95% CI 39.45-247.87) and 0.97 (95% CI 0.95-0.98), respectively. AI-based models performed better than endoscopists in terms of the pooled sensitivity (94% [95% CI 84%-98%] vs 82% [95% CI 77%-86%, P < 0.01). CONCLUSIONS: The use of AI results in increased accuracy in detecting early esophageal cancer. However, most of the included studies have a retrospective study design, thus further validation with prospective trials is required.

摘要

目的:系统地调查以前关于人工智能(AI)辅助诊断模型在检测内镜图像中食管肿瘤准确性的研究,为这些模型的有效性提供科学依据。

方法:检索 PubMed、EMBASE 和 Cochrane Library 数据库,查找截至 2020 年 12 月发表的关于 AI 辅助内镜图像中食管肿瘤检测的研究。使用双变量混合效应回归模型计算 AI 辅助系统的汇总诊断效能。进行亚组分析和 meta 回归分析,以探讨异质性的来源。还比较了 AI 辅助模型与内镜医生的效能。

结果:系统评价和 meta 分析共纳入 16 项研究。AI 辅助检测食管肿瘤的汇总敏感性、特异性、阳性似然比、阴性似然比、诊断优势比和汇总受试者工作特征曲线下面积分别为 94%(95%置信区间 [CI] 92%-96%)、85%(95% CI 73%-92%)、6.40(95% CI 3.38-12.11)、0.06(95% CI 0.04-0.10)、98.88(95% CI 39.45-247.87)和 0.97(95% CI 0.95-0.98)。在汇总敏感性方面,AI 模型优于内镜医生(94%[95% CI 84%-98%]比 82%[95% CI 77%-86%,P<0.01])。

结论:使用 AI 可提高早期食管癌的检测准确性。然而,纳入的大多数研究为回顾性研究设计,因此需要前瞻性试验进一步验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0018/8361665/9b77ecd5b06d/CDD-22-318-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0018/8361665/427466d988f7/CDD-22-318-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0018/8361665/7d7a108bc017/CDD-22-318-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0018/8361665/55e260d6bffb/CDD-22-318-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0018/8361665/7178a8353a33/CDD-22-318-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0018/8361665/b9b718c4ae9c/CDD-22-318-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0018/8361665/c95408cc2525/CDD-22-318-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0018/8361665/66243bd4e6d9/CDD-22-318-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0018/8361665/602f0ed2ff51/CDD-22-318-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0018/8361665/fe7542b2eb9a/CDD-22-318-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0018/8361665/9b77ecd5b06d/CDD-22-318-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0018/8361665/427466d988f7/CDD-22-318-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0018/8361665/7d7a108bc017/CDD-22-318-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0018/8361665/55e260d6bffb/CDD-22-318-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0018/8361665/7178a8353a33/CDD-22-318-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0018/8361665/b9b718c4ae9c/CDD-22-318-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0018/8361665/c95408cc2525/CDD-22-318-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0018/8361665/66243bd4e6d9/CDD-22-318-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0018/8361665/602f0ed2ff51/CDD-22-318-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0018/8361665/fe7542b2eb9a/CDD-22-318-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0018/8361665/9b77ecd5b06d/CDD-22-318-g009.jpg

相似文献

[1]
Accuracy of artificial intelligence-assisted detection of esophageal cancer and neoplasms on endoscopic images: A systematic review and meta-analysis.

J Dig Dis. 2021-6

[2]
Convolutional neural network-based artificial intelligence for the diagnosis of early esophageal cancer based on endoscopic images: A meta-analysis.

Saudi J Gastroenterol. 2022

[3]
Accuracy of artificial intelligence-assisted detection of upper GI lesions: a systematic review and meta-analysis.

Gastrointest Endosc. 2020-10

[4]
Diagnostic value of artificial intelligence-assisted endoscopy for chronic atrophic gastritis: a systematic review and meta-analysis.

Front Med (Lausanne). 2023-5-2

[5]
Accuracy of artificial intelligence on histology prediction and detection of colorectal polyps: a systematic review and meta-analysis.

Gastrointest Endosc. 2020-7

[6]
The role of artificial intelligence in the endoscopic diagnosis of esophageal cancer: a systematic review and meta-analysis.

Dis Esophagus. 2023-11-30

[7]
Current Evidence and Future Perspective of Accuracy of Artificial Intelligence Application for Early Gastric Cancer Diagnosis With Endoscopy: A Systematic and Meta-Analysis.

Front Med (Lausanne). 2021-3-15

[8]
Diagnostic Performance of Artificial Intelligence-Based Models for the Detection of Early Esophageal Cancers in Barret's Esophagus: A Meta-Analysis of Patient-Based Studies.

Cureus. 2021-6-4

[9]
Endoscopic ultrasound artificial intelligence-assisted for prediction of gastrointestinal stromal tumors diagnosis: A systematic review and meta-analysis.

World J Gastrointest Endosc. 2023-8-16

[10]
The Accuracy of Artificial Intelligence in the Endoscopic Diagnosis of Early Gastric Cancer: Pooled Analysis Study.

J Med Internet Res. 2022-5-16

引用本文的文献

[1]
Artificial Intelligence Performance in Image-Based Cancer Identification: Umbrella Review of Systematic Reviews.

J Med Internet Res. 2025-4-1

[2]
Diagnostic Accuracy of Artificial Intelligence in Endoscopy: Umbrella Review.

JMIR Med Inform. 2024-7-15

[3]
Application of Innovative 3D Pathological Tactic for Diagnosis of Organizing Pneumonia.

In Vivo. 2024

[4]
The Performance of Wearable AI in Detecting Stress Among Students: Systematic Review and Meta-Analysis.

J Med Internet Res. 2024-1-31

[5]
Advancing equitable and personalized cancer care: Novel applications and priorities of artificial intelligence for fairness and inclusivity in the patient care workflow.

Eur J Cancer. 2024-2

[6]
Assessment of hyperspectral imaging and CycleGAN-simulated narrowband techniques to detect early esophageal cancer.

Sci Rep. 2023-11-22

[7]
Deep multimodal fusion of image and non-image data in disease diagnosis and prognosis: a review.

Prog Biomed Eng (Bristol). 2023-4-11

[8]
Automated Detection of Endometrial Polyps from Hysteroscopic Videos Using Deep Learning.

Diagnostics (Basel). 2023-4-13

[9]
Future of Artificial Intelligence Applications in Cancer Care: A Global Cross-Sectional Survey of Researchers.

Curr Oncol. 2023-3-16

[10]
Deep Learning for the Diagnosis of Esophageal Cancer in Endoscopic Images: A Systematic Review and Meta-Analysis.

Cancers (Basel). 2022-12-5

本文引用的文献

[1]
Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.

CA Cancer J Clin. 2021-5

[2]
Computer-aided diagnosis of esophageal cancer and neoplasms in endoscopic images: a systematic review and meta-analysis of diagnostic test accuracy.

Gastrointest Endosc. 2021-5

[3]
Real-time artificial intelligence for endoscopic diagnosis of early esophageal squamous cell cancer (with video).

Dig Endosc. 2021-11

[4]
Accuracy of convolutional neural network-based artificial intelligence in diagnosis of gastrointestinal lesions based on endoscopic images: A systematic review and meta-analysis.

Endosc Int Open. 2020-11

[5]
The Impact of Artificial Intelligence in the Endoscopic Assessment of Premalignant and Malignant Esophageal Lesions: Present and Future.

Medicina (Kaunas). 2020-7-21

[6]
Accuracy of artificial intelligence-assisted detection of upper GI lesions: a systematic review and meta-analysis.

Gastrointest Endosc. 2020-10

[7]
Artificial intelligence for the detection of esophageal and esophagogastric junctional adenocarcinoma.

J Gastroenterol Hepatol. 2021-1

[8]
Comparison of performances of artificial intelligence versus expert endoscopists for real-time assisted diagnosis of esophageal squamous cell carcinoma (with video).

Gastrointest Endosc. 2020-10

[9]
Automatic classification of esophageal lesions in endoscopic images using a convolutional neural network.

Ann Transl Med. 2020-4

[10]
Application of artificial intelligence using convolutional neural networks in determining the invasion depth of esophageal squamous cell carcinoma.

Esophagus. 2020-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索