Suppr超能文献

随机排序:免疫细胞命运控制中随机性的起源与益处

Order by chance: origins and benefits of stochasticity in immune cell fate control.

作者信息

Abadie Kathleen, Pease Nicholas A, Wither Matthew J, Kueh Hao Yuan

机构信息

Department of Bioengineering, University of Washington.

Molecular and Cellular Biology Program, University of Washington.

出版信息

Curr Opin Syst Biol. 2019 Dec;18:95-103. doi: 10.1016/j.coisb.2019.10.013. Epub 2019 Nov 16.

Abstract

To protect against diverse challenges, the immune system must continuously generate an arsenal of specialized cell types, each of which can mount a myriad of effector responses upon detection of potential threats. To do so, it must generate multiple differentiated cell populations with defined sizes and proportions, often from rare starting precursor cells. Here, we discuss the emerging view that inherently probabilistic mechanisms, involving rare, rate-limiting regulatory events in single cells, control fate decisions and population sizes and fractions during immune development and function. We first review growing evidence that key fate control points are gated by stochastic signaling and gene regulatory events that occur infrequently over decision-making timescales, such that initially homogeneous cells can adopt variable outcomes in response to uniform signals. We next discuss how such stochastic control can provide functional capabilities that are harder to achieve with deterministic control strategies, and may be central to robust immune system function.

摘要

为抵御各种挑战,免疫系统必须持续生成一系列专门的细胞类型,每种细胞在检测到潜在威胁时都能引发无数种效应反应。为此,它必须经常从稀少的起始前体细胞中生成具有确定大小和比例的多个分化细胞群体。在此,我们讨论一种新出现的观点,即内在概率机制,涉及单细胞中罕见的、限速调节事件,在免疫发育和功能过程中控制命运决定以及群体大小和比例。我们首先回顾越来越多的证据表明,关键的命运控制点由随机信号传导和基因调节事件控制,这些事件在决策时间尺度上很少发生,以至于最初同质的细胞在面对统一信号时可采用可变的结果。接下来,我们讨论这种随机控制如何提供确定性控制策略难以实现的功能能力,并且可能是强大免疫系统功能的核心。

相似文献

1
Order by chance: origins and benefits of stochasticity in immune cell fate control.
Curr Opin Syst Biol. 2019 Dec;18:95-103. doi: 10.1016/j.coisb.2019.10.013. Epub 2019 Nov 16.
2
3
Stochasticity and determinism in cell fate decisions.
Development. 2020 Jul 15;147(14):dev181495. doi: 10.1242/dev.181495.
7
Do rational numbers play a role in selection for stochasticity?
Front Comput Neurosci. 2014 Sep 25;8:113. doi: 10.3389/fncom.2014.00113. eCollection 2014.
8
Stochastic Switching of Cell Fate in Microbes.
Annu Rev Microbiol. 2015;69:381-403. doi: 10.1146/annurev-micro-091213-112852. Epub 2015 Aug 21.
9
Transient hysteresis and inherent stochasticity in gene regulatory networks.
Nat Commun. 2019 Oct 8;10(1):4581. doi: 10.1038/s41467-019-12344-w.
10
Towards a statistical mechanics of cell fate decisions.
Curr Opin Genet Dev. 2012 Dec;22(6):619-26. doi: 10.1016/j.gde.2012.10.004. Epub 2012 Nov 28.

引用本文的文献

1
Cell cycle-coupled transcriptional network orchestrates human B cell fate bifurcation.
bioRxiv. 2025 Jun 25:2025.04.23.649973. doi: 10.1101/2025.04.23.649973.
2
A timed epigenetic switch balances T and ILC lineage proportions in the thymus.
Development. 2024 Dec 1;151(23). doi: 10.1242/dev.203016. Epub 2024 Dec 10.
3
Reversible, tunable epigenetic silencing of TCF1 generates flexibility in the T cell memory decision.
Immunity. 2024 Feb 13;57(2):271-286.e13. doi: 10.1016/j.immuni.2023.12.006. Epub 2024 Jan 31.
4
Rethinking (again) Hardy-Weinberg and genetic drift in undergraduate biology.
Front Genet. 2023 Jun 8;14:1199739. doi: 10.3389/fgene.2023.1199739. eCollection 2023.
5
6
Revising immune cell coordination: Origins and importance of single-cell variation.
Eur J Immunol. 2022 Dec;52(12):1889-1897. doi: 10.1002/eji.202250073. Epub 2022 Oct 31.
7
Divide and Conquer: Phenotypic and Temporal Heterogeneity Within CD8 T Cell Responses.
Front Immunol. 2022 Jul 15;13:949423. doi: 10.3389/fimmu.2022.949423. eCollection 2022.
8
In search of lost time: Enhancers as modulators of timing in lymphocyte development and differentiation.
Immunol Rev. 2021 Mar;300(1):134-151. doi: 10.1111/imr.12946. Epub 2021 Mar 18.
9
Quantifying the Role of Stochasticity in the Development of Autoimmune Disease.
Cells. 2020 Apr 2;9(4):860. doi: 10.3390/cells9040860.

本文引用的文献

1
Slow phosphorylation of a tyrosine residue in LAT optimizes T cell ligand discrimination.
Nat Immunol. 2019 Nov;20(11):1481-1493. doi: 10.1038/s41590-019-0502-2. Epub 2019 Oct 14.
2
Phase separation of Polycomb-repressive complex 1 is governed by a charged disordered region of CBX2.
Genes Dev. 2019 Jul 1;33(13-14):799-813. doi: 10.1101/gad.326488.119. Epub 2019 Jun 6.
3
New subtypes of allele-specific epigenetic effects: implications for brain development, function and disease.
Curr Opin Neurobiol. 2019 Dec;59:69-78. doi: 10.1016/j.conb.2019.04.012. Epub 2019 May 30.
4
Cytokine-mediated communication: a quantitative appraisal of immune complexity.
Nat Rev Immunol. 2019 Apr;19(4):205-217. doi: 10.1038/s41577-019-0131-x.
6
Mapping Local and Global Liquid Phase Behavior in Living Cells Using Photo-Oligomerizable Seeds.
Cell. 2018 Nov 29;175(6):1467-1480.e13. doi: 10.1016/j.cell.2018.10.048.
7
8
Modifying clonal selection theory with a probabilistic cell.
Immunol Rev. 2018 Sep;285(1):249-262. doi: 10.1111/imr.12695.
9
T cell cytolytic capacity is independent of initial stimulation strength.
Nat Immunol. 2018 Aug;19(8):849-858. doi: 10.1038/s41590-018-0160-9. Epub 2018 Jul 16.
10
Lck promotes Zap70-dependent LAT phosphorylation by bridging Zap70 to LAT.
Nat Immunol. 2018 Jul;19(7):733-741. doi: 10.1038/s41590-018-0131-1. Epub 2018 Jun 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验