Suppr超能文献

视觉统计学习受任意和自然类别调节。

Visual statistical learning is modulated by arbitrary and natural categories.

机构信息

Department of Psychological and Brain Sciences, University of Delaware, 108 Wolf Hall, Newark, DE, 19716, USA.

出版信息

Psychon Bull Rev. 2021 Aug;28(4):1281-1288. doi: 10.3758/s13423-021-01917-w. Epub 2021 Mar 31.

Abstract

Visual statistical learning (VSL) describes the unintentional extraction of statistical regularities from visual environments across time or space, and is typically studied using novel stimuli (e.g., symbols unfamiliar to participants) and using familiarization procedures that are passive or require only basic vigilance. The natural visual world, however, is rich with a variety of complex visual stimuli, and we experience that world in the presence of goal-driven behavior including overt learning of other kinds. To examine how VSL responds to such contexts, we exposed subjects to statistical contingencies as they learned arbitrary categorical mappings of unfamiliar stimuli (fractals, Experiment 1) or familiar stimuli with preexisting categorical boundaries (faces and scenes, Experiment 2). In a familiarization stage, subjects learned by trial and error the arbitrary mappings between stimuli and one of two responses. Unbeknownst to participants, items were paired such that they always appeared together in the stream. Pairs were equally likely to be of the same or different category. In a pair recognition stage to assess VSL, subjects chose between a target pair and a foil pair. In both experiments, subjects' VSL was shaped by arbitrary categories: same-category pairs were learned better than different-category pairs. Natural categories (Experiment 2) also played a role, with subjects learning same-natural-category pairs at higher rates than different-category pairs, an effect that did not interact with arbitrary mappings. We conclude that learning goals of the observer and preexisting knowledge about the structure of the world play powerful roles in the incidental learning of novel statistical information.

摘要

视觉统计学习(VSL)描述了在时间或空间上从视觉环境中无意识地提取统计规律的过程,通常使用新颖的刺激物(例如,参与者不熟悉的符号)进行研究,并使用被动或仅需要基本警觉的熟悉化程序。然而,自然视觉世界充满了各种复杂的视觉刺激,我们在目标驱动行为的存在下体验这个世界,包括其他类型的显性学习。为了研究 VSL 如何应对这种情况,我们在 subjects 学习不熟悉刺激物的任意分类映射(分形,实验 1)或具有预先存在的分类边界的熟悉刺激物(面孔和场景,实验 2)时,向其暴露于统计关系中。在熟悉化阶段,subjects 通过试错学习刺激物和两个反应之一之间的任意映射。在参与者不知情的情况下,项目配对使得它们总是在流中一起出现。对的可能性与不同类别的对相同。在评估 VSL 的配对识别阶段,subjects 在目标对和箔对之间进行选择。在两项实验中,subjects 的 VSL 都是由任意类别塑造的:同类别对比不同类别对更容易学习。自然类别(实验 2)也起作用,subjects 以更高的速度学习同自然类别对,而不是不同类别对,这种效果与任意映射没有相互作用。我们得出结论,观察者的学习目标和对世界结构的预先存在的知识在对新的统计信息的偶然学习中起着强大的作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验