Suppr超能文献

多视图网络数据中的关联检验。

Testing for association in multiview network data.

机构信息

Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Ontario, Canada.

Departments of Statistics and Biostatistics, University of Washington, Seattle, Washington, USA.

出版信息

Biometrics. 2022 Sep;78(3):1018-1030. doi: 10.1111/biom.13464. Epub 2021 Apr 12.

Abstract

In this paper, we consider data consisting of multiple networks, each composed of a different edge set on a common set of nodes. Many models have been proposed for the analysis of such multiview network data under the assumption that the data views are closely related. In this paper, we provide tools for evaluating this assumption. In particular, we ask: given two networks that each follow a stochastic block model, is there an association between the latent community memberships of the nodes in the two networks? To answer this question, we extend the stochastic block model for a single network view to the two-view setting, and develop a new hypothesis test for the null hypothesis that the latent community memberships in the two data views are independent. We apply our test to protein-protein interaction data from the HINT database. We find evidence of a weak association between the latent community memberships of proteins defined with respect to binary interaction data and the latent community memberships of proteins defined with respect to cocomplex association data. We also extend this proposal to the setting of a network with node covariates. The proposed methods extend readily to three or more network/multivariate data views.

摘要

在本文中,我们考虑由多个网络组成的数据,每个网络由公共节点集上的不同边集组成。在假设数据视图密切相关的情况下,已经提出了许多用于分析此类多视图网络数据的模型。在本文中,我们提供了评估此假设的工具。具体来说,我们要问:给定两个网络,每个网络都遵循随机块模型,那么两个网络中节点的潜在社区成员身份之间是否存在关联?为了回答这个问题,我们将单个网络视图的随机块模型扩展到了双视图设置,并为两个数据视图中的潜在社区成员身份独立的零假设开发了一个新的假设检验。我们将我们的测试应用于 HINT 数据库中的蛋白质 - 蛋白质相互作用数据。我们发现,根据二进制相互作用数据定义的蛋白质的潜在社区成员身份和根据共复合物关联数据定义的蛋白质的潜在社区成员身份之间存在弱关联的证据。我们还将此建议扩展到具有节点协变量的网络设置中。所提出的方法可以轻松扩展到三个或更多网络/多变量数据视图。

相似文献

1
Testing for association in multiview network data.多视图网络数据中的关联检验。
Biometrics. 2022 Sep;78(3):1018-1030. doi: 10.1111/biom.13464. Epub 2021 Apr 12.
2
LATENT SPACE MODELS FOR MULTIVIEW NETWORK DATA.多视图网络数据的潜在空间模型
Ann Appl Stat. 2017 Sep;11(3):1217-1244. doi: 10.1214/16-AOAS955. Epub 2017 Oct 5.
3
Drug-target interaction prediction by integrating multiview network data.通过整合多视图网络数据进行药物-靶点相互作用预测
Comput Biol Chem. 2017 Aug;69:185-193. doi: 10.1016/j.compbiolchem.2017.03.011. Epub 2017 Mar 31.
5
Partially shared latent factor learning with multiview data.基于多视图数据的部分共享潜在因子学习。
IEEE Trans Neural Netw Learn Syst. 2015 Jun;26(6):1233-46. doi: 10.1109/TNNLS.2014.2335234. Epub 2014 Jul 28.
8
Compressing Networks with Super Nodes.超级节点压缩网络。
Sci Rep. 2018 Jul 18;8(1):10892. doi: 10.1038/s41598-018-29174-3.
9
Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications.模块化网络随机块模型的渐近分析及其算法应用。
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Dec;84(6 Pt 2):066106. doi: 10.1103/PhysRevE.84.066106. Epub 2011 Dec 12.
10

本文引用的文献

2
Are clusterings of multiple data views independent?多个数据视图的聚类是否相互独立?
Biostatistics. 2020 Oct 1;21(4):692-708. doi: 10.1093/biostatistics/kxz001.
3
LATENT SPACE MODELS FOR MULTIVIEW NETWORK DATA.多视图网络数据的潜在空间模型
Ann Appl Stat. 2017 Sep;11(3):1217-1244. doi: 10.1214/16-AOAS955. Epub 2017 Oct 5.
4
Covariate-assisted spectral clustering.协变量辅助谱聚类
Biometrika. 2017 Jun;104(2):361-377. doi: 10.1093/biomet/asx008. Epub 2017 Mar 19.
5
The ground truth about metadata and community detection in networks.网络中关于元数据和社区检测的真相。
Sci Adv. 2017 May 3;3(5):e1602548. doi: 10.1126/sciadv.1602548. eCollection 2017 May.
6
Clustering network layers with the strata multilayer stochastic block model.使用分层多层随机块模型对网络层进行聚类
IEEE Trans Netw Sci Eng. 2016 Apr-Jun;3(2):95-105. doi: 10.1109/TNSE.2016.2537545. Epub 2016 Mar 25.
7
Structure and inference in annotated networks.带注释网络中的结构和推理。
Nat Commun. 2016 Jun 16;7:11863. doi: 10.1038/ncomms11863.
8
Testing and Modeling Dependencies Between a Network and Nodal Attributes.测试和建模网络与节点属性之间的依赖性。
J Am Stat Assoc. 2015;110(511):1047-1056. doi: 10.1080/01621459.2015.1008697. Epub 2015 Nov 7.
9
Inferring the mesoscale structure of layered, edge-valued, and time-varying networks.推断分层、边值和时变网络的中尺度结构。
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Oct;92(4):042807. doi: 10.1103/PhysRevE.92.042807. Epub 2015 Oct 9.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验