IEEE Trans Neural Syst Rehabil Eng. 2021;29:718-730. doi: 10.1109/TNSRE.2021.3070327. Epub 2021 Apr 19.
Event-related potential (ERP) is bioelectrical activity that occurs in the brain in response to specific events or stimuli, reflecting the electrophysiological changes in the brain during cognitive processes. ERP is important in cognitive neuroscience and has been applied to brain-computer interfaces (BCIs). However, because ERP signals collected on the scalp are weak, mixed with spontaneous electroencephalogram (EEG) signals, and their temporal and spatial features are complex, accurate ERP detection is challenging. Compared to traditional neural networks, the capsule network (CapsNet) replaces scalar-output neurons with vector-output capsules, allowing the various input information to be well preserved in the capsules. In this study, we expect to utilize CapsNet to extract the discriminative spatial-temporal features of ERP and encode them in capsules to reduce the loss of valuable information, thereby improving the ERP detection performance for BCI. Therefore, we propose ERP-CapsNet to perform ERP detection in a BCI speller application. The experimental results on BCI Competition datasets and the Akimpech dataset show that ERP-CapsNet achieves better classification performances than do the state-of-the-art techniques. We also use a decoder to investigate the attributes of ERPs encoded in capsules. The results show that ERP-CapsNet relies on the P300 and P100 components to detect ERP. Therefore, ERP-CapsNet not only acts as an outstanding method for ERP detection, but also provides useful insights into the ERP detection mechanism.
事件相关电位 (ERP) 是大脑对特定事件或刺激产生的生物电活动,反映了认知过程中大脑的电生理变化。ERP 在认知神经科学中很重要,并已应用于脑机接口 (BCI)。然而,由于头皮上采集到的 ERP 信号较弱,与自发脑电图 (EEG) 信号混合,并且其时空特征复杂,因此准确检测 ERP 具有挑战性。与传统神经网络相比,胶囊网络 (CapsNet) 用向量输出胶囊代替标量输出神经元,使各种输入信息在胶囊中得到很好的保留。在这项研究中,我们期望利用 CapsNet 提取 ERP 的有鉴别力的时空特征,并将其编码在胶囊中,以减少有价值信息的丢失,从而提高 BCI 中的 ERP 检测性能。因此,我们提出了用于 BCI 拼写器应用中的 ERP-CapsNet 来进行 ERP 检测。在 BCI 竞赛数据集和 Akimpech 数据集上的实验结果表明,ERP-CapsNet 比最先进的技术具有更好的分类性能。我们还使用解码器研究了胶囊中编码的 ERP 的属性。结果表明,ERP-CapsNet 依赖 P300 和 P100 成分来检测 ERP。因此,ERP-CapsNet 不仅是一种出色的 ERP 检测方法,还为 ERP 检测机制提供了有用的见解。