文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

所有通过体散射的光子成像。

All Photons Imaging Through Volumetric Scattering.

作者信息

Satat Guy, Heshmat Barmak, Raviv Dan, Raskar Ramesh

机构信息

Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

出版信息

Sci Rep. 2016 Sep 29;6:33946. doi: 10.1038/srep33946.


DOI:10.1038/srep33946
PMID:27683065
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5041145/
Abstract

Imaging through thick highly scattering media (sample thickness ≫ mean free path) can realize broad applications in biomedical and industrial imaging as well as remote sensing. Here we propose a computational "All Photons Imaging" (API) framework that utilizes time-resolved measurement for imaging through thick volumetric scattering by using both early arrived (non-scattered) and diffused photons. As opposed to other methods which aim to lock on specific photons (coherent, ballistic, acoustically modulated, etc.), this framework aims to use all of the optical signal. Compared to conventional early photon measurements for imaging through a 15 mm tissue phantom, our method shows a two fold improvement in spatial resolution (4db increase in Peak SNR). This all optical, calibration-free framework enables widefield imaging through thick turbid media, and opens new avenues in non-invasive testing, analysis, and diagnosis.

摘要

通过厚的高散射介质(样品厚度≫平均自由程)进行成像可在生物医学和工业成像以及遥感中实现广泛应用。在此,我们提出一种计算“全光子成像”(API)框架,该框架利用时间分辨测量,通过使用早期到达(非散射)光子和漫射光子来对厚体积散射体进行成像。与其他旨在锁定特定光子(相干、弹道、声学调制等)的方法不同,此框架旨在利用所有光信号。与通过15毫米组织模型进行成像的传统早期光子测量相比,我们的方法在空间分辨率上提高了两倍(峰值信噪比增加4分贝)。这种全光学、无需校准的框架能够通过厚浑浊介质进行宽视场成像,并为非侵入性测试、分析和诊断开辟了新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19ae/5041145/422ae1e6c946/srep33946-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19ae/5041145/a5e1f7adeee8/srep33946-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19ae/5041145/9ddcd655393e/srep33946-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19ae/5041145/6fc8b53fb29d/srep33946-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19ae/5041145/9833c3df0bed/srep33946-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19ae/5041145/422ae1e6c946/srep33946-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19ae/5041145/a5e1f7adeee8/srep33946-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19ae/5041145/9ddcd655393e/srep33946-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19ae/5041145/6fc8b53fb29d/srep33946-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19ae/5041145/9833c3df0bed/srep33946-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19ae/5041145/422ae1e6c946/srep33946-f5.jpg

相似文献

[1]
All Photons Imaging Through Volumetric Scattering.

Sci Rep. 2016-9-29

[2]
Focused fluorescence excitation with time-reversed ultrasonically encoded light and imaging in thick scattering media.

Laser Phys Lett. 2013

[3]
Role of late photons in diffuse optical imaging.

Opt Express. 2020-9-28

[4]
Design and characterization of a dead-time regime enhanced early photon projection imaging system.

Rev Sci Instrum. 2018-4

[5]
Imaging Dynamics Beneath Turbid Media via Parallelized Single-Photon Detection.

Adv Sci (Weinh). 2022-8

[6]
Imaging through dynamical scattering media by two-photon absorption detectors.

Opt Express. 2021-9-13

[7]
Ultrasound-modulated optical glucose sensing using a 1645 nm laser.

Sci Rep. 2020-8-7

[8]
Speckle-resolved optical coherence tomography for mesoscopic imaging within scattering media.

Biomed Opt Express. 2022-3-14

[9]
Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study towards optical clearing of biotissues.

Phys Med Biol. 2002-7-7

[10]
Path-length-resolved measurements of multiple scattered photons in static and dynamic turbid media using phase-modulated low-coherence interferometry.

J Biomed Opt. 2007

引用本文的文献

[1]
Rapid diffused optical imaging for accurate 3D estimation of subcutaneous tissue features.

iScience. 2025-1-23

[2]
Learning-based real-time imaging through dynamic scattering media.

Light Sci Appl. 2024-8-16

[3]
Terahertz bistatic three-dimensional computational imaging of hidden objects through random media.

Sci Rep. 2024-3-14

[4]
NeuWS: Neural wavefront shaping for guidestar-free imaging through static and dynamic scattering media.

Sci Adv. 2023-6-28

[5]
Terahertz Nonlinear Ghost Imaging via Plane Decomposition: Toward Near-Field Micro-Volumetry.

ACS Photonics. 2023-3-10

[6]
Unrolled-DOT: an interpretable deep network for diffuse optical tomography.

J Biomed Opt. 2023-3

[7]
Deterministic Terahertz Wave Control in Scattering Media.

ACS Photonics. 2022-8-17

[8]
Imaging Dynamics Beneath Turbid Media via Parallelized Single-Photon Detection.

Adv Sci (Weinh). 2022-8

[9]
A boundary migration model for imaging within volumetric scattering media.

Nat Commun. 2022-6-9

[10]
Optical reciprocity induced wavefront shaping for axial and lateral shifting of focus through a scattering medium.

Sci Rep. 2022-4-16

本文引用的文献

[1]
Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue.

Nat Photonics. 2015

[2]
Optical brush: Imaging through permuted probes.

Sci Rep. 2016-2-12

[3]
Encrypted Three-dimensional Dynamic Imaging using Snapshot Time-of-flight Compressed Ultrafast Photography.

Sci Rep. 2015-10-27

[4]
Locating and classifying fluorescent tags behind turbid layers using time-resolved inversion.

Nat Commun. 2015-4-13

[5]
Single-photon sensitive light-in-fight imaging.

Nat Commun. 2015-1-27

[6]
Single-shot compressed ultrafast photography at one hundred billion frames per second.

Nature. 2014-12-4

[7]
Estimating wide-angle, spatially varying reflectance using time-resolved inversion of backscattered light.

J Opt Soc Am A Opt Image Sci Vis. 2014-5-1

[8]
Tomographic lifetime imaging using combined early- and late-arriving photons.

Opt Lett. 2014-3-1

[9]
Non-invasive imaging through opaque scattering layers.

Nature. 2012-11-8

[10]
A multi-view time-domain non-contact diffuse optical tomography scanner with dual wavelength detection for intrinsic and fluorescence small animal imaging.

Rev Sci Instrum. 2012-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索