Suppr超能文献

ACS1G 基因 1-氨基环丙烷-1-羧酸合成酶功能获得导致黄瓜雌性花发育的雌性植株。

Gain-of-function of the 1-aminocyclopropane-1-carboxylate synthase gene ACS1G induces female flower development in cucumber gynoecy.

机构信息

Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 100081, China.

Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China.

出版信息

Plant Cell. 2021 Apr 17;33(2):306-321. doi: 10.1093/plcell/koaa018.

Abstract

Unisexual flowers provide a useful system for studying plant sex determination. In cucumber (Cucumis sativus L.), three major Mendelian loci control unisexual flower development, Female (F), androecious [a; 1-aminocyclopropane-1-carboxylate {ACC} synthase 11, acs11], and Monoecious (M; ACS2), referred to here as the Female, Androecious, Monoecious (FAM) model, in combination with two genes, gynoecious (g, the WIP family C2H2 zinc finger transcription factor gene WIP1) and the ethylene biosynthetic gene ACC oxidase 2 (ACO2). The F locus, conferring gynoecy and the potential for increasing fruit yield, is defined by a 30.2-kb tandem duplication containing three genes. However, the gene that determines the Female phenotype, and its mechanism, remains unknown. Here, we created a set of mutants and revealed that ACS1G is responsible for gynoecy conferred by the F locus. The duplication resulted in ACS1G acquiring a new promoter and expression pattern; in plants carrying the F locus duplication, ACS1G is expressed early in floral bud development, where it functions with ACO2 to generate an ethylene burst. The resulting ethylene represses WIP1 and activates ACS2 to initiate gynoecy. This early ACS1G expression bypasses the need for ACS11 to produce ethylene, thereby establishing a dominant pathway for female floral development. Based on these findings, we propose a model for how these ethylene biosynthesis genes cooperate to control unisexual flower development in cucumber.

摘要

雌雄同株花为研究植物性别决定提供了一个有用的系统。在黄瓜(Cucumis sativus L.)中,三个主要的孟德尔基因座控制着单性花的发育,雌性(F)、两性花(a;1-氨基环丙烷-1-羧酸合酶 11,acs11)和雌雄同株(M;ACS2),这里称为雌性、两性花、雌雄同株(FAM)模型,与两个基因,雌性(g,WIP 家族 C2H2 锌指转录因子基因 WIP1)和乙烯生物合成基因 ACC 氧化酶 2(ACO2)一起。赋予雌性和增加果实产量潜力的 F 基因座由包含三个基因的 30.2kb 串联重复序列定义。然而,决定雌性表型的基因及其机制仍不清楚。在这里,我们创建了一组突变体,并揭示了 ACS1G 是由 F 基因座决定雌性的原因。该重复导致 ACS1G 获得了一个新的启动子和表达模式;在携带 F 基因座重复的植物中,ACS1G 在花芽发育早期表达,在那里它与 ACO2 一起产生乙烯爆发。产生的乙烯抑制 WIP1 并激活 ACS2 以启动雌性。这种早期的 ACS1G 表达绕过了 ACS11 产生乙烯的需要,从而建立了一个雌性花发育的显性途径。基于这些发现,我们提出了一个模型,说明这些乙烯生物合成基因如何合作控制黄瓜中单性花的发育。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e74/8136878/7df4b52647e2/koaa018f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验