Suppr超能文献

转录组分析揭示了雌蕊器官发生中基因调控网络活性的时间顺序。

Transcriptome analysis of gynoecium morphogenesis uncovers the chronology of gene regulatory network activity.

机构信息

Plant Development Group, Institute of Botany, Justus-Liebig-University, Heinrich-Buff-Ring 38, 35392 Gießen, Germany.

Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Unidad de Genómica Avanzada (UGA-LANGEBIO), CP 36824 Irapuato, Mexico.

出版信息

Plant Physiol. 2021 Apr 2;185(3):1076-1090. doi: 10.1093/plphys/kiaa090.

Abstract

The gynoecium is the most complex organ formed by the flowering plants. It encloses the ovules, provides a surface for pollen contact and self-incompatibility reactions, allows pollen tube growth, and, post fertilization, develops into the fruit. Consequently, the regulation of gynoecium morphogenesis is complex and appropriate timing of this process in part determines reproductive success. However, little is known about the global control of gynoecium development, even though many regulatory genes have been characterized. Here, we characterized dynamic gene expression changes using laser-microdissected gynoecium tissue from four developmental stages in Arabidopsis. We provide a high-resolution map of global expression dynamics during gynoecium morphogenesis and link these to the gynoecium interactome. We reveal groups of genes acting together early and others acting late in morphogenesis. Clustering of co-expressed genes enables comparisons between the leaf, shoot apex, and gynoecium transcriptomes, allowing the dissection of common and distinct regulators. Furthermore, our results lead to the discovery of genes with putative transcription factor activity (B3LF1, -2, DOFLF1), which, when mutated, lead to impaired gynoecium expansion, illustrating that global transcriptome analyses reveal yet unknown developmental regulators. Our data show that genes encoding highly interacting proteins, such as SEPALLATA3, AGAMOUS, and TOPLESS, are expressed evenly during development but switch interactors over time, whereas stage-specific proteins tend to have fewer interactors. Our analysis connects specific transcriptional regulator activities, protein interactions, and underlying metabolic processes, contributing toward a dynamic network model for gynoecium development.

摘要

雌蕊是由开花植物形成的最复杂的器官。它包含胚珠,为花粉接触和自交不亲和反应提供表面,允许花粉管生长,并在受精后发育成果实。因此,雌蕊形态发生的调控是复杂的,这个过程的适当时间在一定程度上决定了生殖成功。然而,尽管已经鉴定了许多调控基因,但对雌蕊发育的全局调控知之甚少。在这里,我们使用来自拟南芥四个发育阶段的激光微切割雌蕊组织,对动态基因表达变化进行了表征。我们提供了雌蕊形态发生过程中全局表达动态的高分辨率图谱,并将这些图谱与雌蕊相互作用组联系起来。我们揭示了在形态发生过程中早期和晚期共同作用的基因群。共表达基因的聚类允许在叶片、茎尖和雌蕊转录组之间进行比较,从而可以分离出共同和独特的调控因子。此外,我们的结果导致发现了具有潜在转录因子活性的基因(B3LF1、-2、DOFLF1),当这些基因发生突变时,会导致雌蕊扩张受损,这表明全局转录组分析揭示了尚未发现的发育调控因子。我们的数据表明,编码高度相互作用蛋白的基因,如 SEPALLATA3、AGAMOUS 和 TOPLESS,在发育过程中均匀表达,但随时间改变相互作用蛋白,而特定阶段的蛋白质往往具有较少的相互作用蛋白。我们的分析将特定转录调控因子活性、蛋白质相互作用和潜在代谢过程联系起来,为雌蕊发育的动态网络模型做出了贡献。

相似文献

2
Gynoecium and fruit development in Arabidopsis.拟南芥的雌蕊和果实发育。
Development. 2022 Mar 1;149(5). doi: 10.1242/dev.200120. Epub 2022 Feb 28.
4
Hormonal control of the development of the gynoecium.雌蕊群发育的激素调控。
Curr Opin Plant Biol. 2016 Feb;29:104-14. doi: 10.1016/j.pbi.2015.12.006. Epub 2016 Jan 19.
8
Inside the gynoecium: at the carpel margin.子房内:心皮边缘。
Trends Plant Sci. 2013 Nov;18(11):644-55. doi: 10.1016/j.tplants.2013.08.002. Epub 2013 Sep 2.

引用本文的文献

3
AGAMOUS mediates timing of guard cell formation during gynoecium development.AGAMOUS 调控雌蕊发育过程中保卫细胞形成的时间。
PLoS Genet. 2023 Oct 11;19(10):e1011000. doi: 10.1371/journal.pgen.1011000. eCollection 2023 Oct.
7
Case not closed: the mystery of the origin of the carpel.案件未结:心皮起源之谜
Evodevo. 2021 Dec 15;12(1):14. doi: 10.1186/s13227-021-00184-z.

本文引用的文献

5
A molecular update on the origin of the carpel.心皮起源的分子研究进展
Curr Opin Plant Biol. 2020 Feb;53:15-22. doi: 10.1016/j.pbi.2019.08.009. Epub 2019 Oct 15.
7
Photosynthetic activity of reproductive organs.生殖器官的光合作用。
J Exp Bot. 2019 Mar 27;70(6):1737-1754. doi: 10.1093/jxb/erz033.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验