Suppr超能文献

可变剪接产生假的Strictosidine β-D-葡萄糖苷酶调节长春花生物碱的合成。

Alternative splicing creates a pseudo-strictosidine β-d-glucosidase modulating alkaloid synthesis in Catharanthus roseus.

机构信息

EA2106 "Biomolécules et Biotechnologies Végétales," Université de Tours, 37200 Tours, France.

Laboratorio de Biotecnología, Universidad de Antioquia, Sede de Investigación Universitaria, 50010 Medellin, Colombia.

出版信息

Plant Physiol. 2021 Apr 2;185(3):836-856. doi: 10.1093/plphys/kiaa075.

Abstract

Deglycosylation is a key step in the activation of specialized metabolites involved in plant defense mechanisms. This reaction is notably catalyzed by β-glucosidases of the glycosyl hydrolase 1 (GH1) family such as strictosidine β-d-glucosidase (SGD) from Catharanthus roseus. SGD catalyzes the deglycosylation of strictosidine, forming a highly reactive aglycone involved in the synthesis of cytotoxic monoterpene indole alkaloids (MIAs) and in the crosslinking of aggressor proteins. By exploring C. roseus transcriptomic resources, we identified an alternative splicing event of the SGD gene leading to the formation of a shorter isoform of this enzyme (shSGD) that lacks the last 71-residues and whose transcript ratio with SGD ranges from 1.7% up to 42.8%, depending on organs and conditions. Whereas it completely lacks β-glucosidase activity, shSGD interacts with SGD and causes the disruption of SGD multimers. Such disorganization drastically inhibits SGD activity and impacts downstream MIA synthesis. In addition, shSGD disrupts the metabolic channeling of downstream biosynthetic steps by hampering the recruitment of tetrahydroalstonine synthase in cell nuclei. shSGD thus corresponds to a pseudo-enzyme acting as a regulator of MIA biosynthesis. These data shed light on a peculiar control mechanism of β-glucosidase multimerization, an organization common to many defensive GH1 members.

摘要

去糖基化是参与植物防御机制的特殊代谢物激活的关键步骤。该反应主要由糖苷水解酶 1(GH1)家族的β-葡萄糖苷酶催化,如长春花中的斯梯夫碱β-D-葡萄糖苷酶(SGD)。SGD 催化斯梯夫碱的去糖基化,形成一种高反应性的糖苷配基,参与细胞毒性单萜吲哚生物碱(MIAs)的合成和进攻蛋白的交联。通过探索长春花转录组资源,我们鉴定了 SGD 基因的一种选择性剪接事件,导致该酶形成一个较短的同工型(shSGD),其缺乏最后 71 个残基,其与 SGD 的转录比例根据器官和条件从 1.7%到 42.8%不等。虽然它完全缺乏β-葡萄糖苷酶活性,但 shSGD 与 SGD 相互作用并导致 SGD 多聚体的破坏。这种组织紊乱极大地抑制了 SGD 活性,并影响下游 MIA 的合成。此外,shSGD 通过阻碍四氢阿尔斯碱合酶在细胞核中的募集,破坏下游生物合成步骤的代谢通道。因此,shSGD 对应于一种伪酶,作为 MIA 生物合成的调节剂。这些数据揭示了β-葡萄糖苷酶多聚体形成的一种特殊调控机制,这种组织是许多防御性 GH1 成员所共有的。

相似文献

引用本文的文献

9
How alternative splicing changes the properties of plant proteins.可变剪接如何改变植物蛋白质的特性。
Quant Plant Biol. 2022 Jul 1;3:e14. doi: 10.1017/qpb.2022.9. eCollection 2022.

本文引用的文献

9
Live and let die: insights into pseudoenzyme mechanisms from structure.生死由命:从结构角度洞察假酶机制。
Curr Opin Struct Biol. 2017 Dec;47:95-104. doi: 10.1016/j.sbi.2017.07.004. Epub 2017 Aug 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验