State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271000, China.
Plant Physiol. 2021 Apr 23;185(4):1924-1942. doi: 10.1093/plphys/kiaa118.
Less than 40% of the nitrogen (N) fertilizer applied to soil is absorbed by crops. Thus, improving the N use efficiency of crops is critical for agricultural development. However, the underlying regulation of these processes remains largely unknown, particularly in woody plants. By conducting yeast two-hybrid assays, we identified one interacting protein of MdMYB88 and MdMYB124 in apple (Malus × domestica), namely BTB and TAZ domain protein 2 (MdBT2). Ubiquitination and protein stabilization analysis revealed that MdBT2 ubiquitinates and degrades MdMYB88 and MdMYB124 via the 26S proteasome pathway. MdBT2 negatively regulates nitrogen usage as revealed by the reduced fresh weight, dry weight, N concentration, and N usage index of MdBT2 overexpression calli under low-N conditions. In contrast, MdMYB88 and MdMYB124 increase nitrate absorption, allocation, and remobilization by regulating expression of MdNRT2.4, MdNRT1.8, MdNRT1.7, and MdNRT1.5 under N limitation, thereby regulating N usage. The results obtained illustrate the mechanism of a regulatory module comprising MdBT2-MdMYB88/MdMYB124-MdNRTs, through which plants modulate N usage. These data contribute to a molecular approach to improve the N usage of fruit crops under limited N acquisition.
施用于土壤的氮 (N) 肥料中,作物吸收的不到 40%。因此,提高作物的氮利用效率对农业发展至关重要。然而,这些过程的潜在调控机制在很大程度上仍然未知,特别是在木本植物中。通过进行酵母双杂交测定,我们在苹果 (Malus × domestica) 中鉴定出 MdMYB88 和 MdMYB124 的一个相互作用蛋白,即 BTB 和 TAZ 结构域蛋白 2 (MdBT2)。泛素化和蛋白质稳定性分析表明,MdBT2 通过 26S 蛋白酶体途径泛素化和降解 MdMYB88 和 MdMYB124。MdBT2 负调控氮的利用,这表现在低氮条件下 MdBT2 过表达愈伤组织的鲜重、干重、氮浓度和氮利用指数降低。相比之下,MdMYB88 和 MdMYB124 通过调节 MdNRT2.4、MdNRT1.8、MdNRT1.7 和 MdNRT1.5 的表达,增加硝酸盐的吸收、分配和再利用,从而调控氮的利用。这些结果说明了包含 MdBT2-MdMYB88/MdMYB124-MdNRTs 的调控模块的机制,通过该机制,植物可以调节氮的利用。这些数据为在有限的氮吸收条件下提高果树枝条氮利用的分子方法提供了参考。