Suppr超能文献

MdBT2-MdMYB88/MdMYB124-MdNRTs 调控模块调控苹果中的氮素利用。

The regulatory module MdBT2-MdMYB88/MdMYB124-MdNRTs regulates nitrogen usage in apple.

机构信息

State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.

State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271000, China.

出版信息

Plant Physiol. 2021 Apr 23;185(4):1924-1942. doi: 10.1093/plphys/kiaa118.

Abstract

Less than 40% of the nitrogen (N) fertilizer applied to soil is absorbed by crops. Thus, improving the N use efficiency of crops is critical for agricultural development. However, the underlying regulation of these processes remains largely unknown, particularly in woody plants. By conducting yeast two-hybrid assays, we identified one interacting protein of MdMYB88 and MdMYB124 in apple (Malus × domestica), namely BTB and TAZ domain protein 2 (MdBT2). Ubiquitination and protein stabilization analysis revealed that MdBT2 ubiquitinates and degrades MdMYB88 and MdMYB124 via the 26S proteasome pathway. MdBT2 negatively regulates nitrogen usage as revealed by the reduced fresh weight, dry weight, N concentration, and N usage index of MdBT2 overexpression calli under low-N conditions. In contrast, MdMYB88 and MdMYB124 increase nitrate absorption, allocation, and remobilization by regulating expression of MdNRT2.4, MdNRT1.8, MdNRT1.7, and MdNRT1.5 under N limitation, thereby regulating N usage. The results obtained illustrate the mechanism of a regulatory module comprising MdBT2-MdMYB88/MdMYB124-MdNRTs, through which plants modulate N usage. These data contribute to a molecular approach to improve the N usage of fruit crops under limited N acquisition.

摘要

施用于土壤的氮 (N) 肥料中,作物吸收的不到 40%。因此,提高作物的氮利用效率对农业发展至关重要。然而,这些过程的潜在调控机制在很大程度上仍然未知,特别是在木本植物中。通过进行酵母双杂交测定,我们在苹果 (Malus × domestica) 中鉴定出 MdMYB88 和 MdMYB124 的一个相互作用蛋白,即 BTB 和 TAZ 结构域蛋白 2 (MdBT2)。泛素化和蛋白质稳定性分析表明,MdBT2 通过 26S 蛋白酶体途径泛素化和降解 MdMYB88 和 MdMYB124。MdBT2 负调控氮的利用,这表现在低氮条件下 MdBT2 过表达愈伤组织的鲜重、干重、氮浓度和氮利用指数降低。相比之下,MdMYB88 和 MdMYB124 通过调节 MdNRT2.4、MdNRT1.8、MdNRT1.7 和 MdNRT1.5 的表达,增加硝酸盐的吸收、分配和再利用,从而调控氮的利用。这些结果说明了包含 MdBT2-MdMYB88/MdMYB124-MdNRTs 的调控模块的机制,通过该机制,植物可以调节氮的利用。这些数据为在有限的氮吸收条件下提高果树枝条氮利用的分子方法提供了参考。

相似文献

1
The regulatory module MdBT2-MdMYB88/MdMYB124-MdNRTs regulates nitrogen usage in apple.
Plant Physiol. 2021 Apr 23;185(4):1924-1942. doi: 10.1093/plphys/kiaa118.
3
Abscisic acid homeostasis is mediated by feedback regulation of MdMYB88 and MdMYB124.
J Exp Bot. 2021 Feb 2;72(2):592-607. doi: 10.1093/jxb/eraa449.
4
Interaction of BTB-TAZ protein MdBT2 and DELLA protein MdRGL3a regulates nitrate-mediated plant growth.
Plant Physiol. 2021 May 27;186(1):750-766. doi: 10.1093/plphys/kiab065.
6
BTB-TAZ Domain Protein MdBT2 Modulates Malate Accumulation and Vacuolar Acidification in Response to Nitrate.
Plant Physiol. 2020 Jun;183(2):750-764. doi: 10.1104/pp.20.00208. Epub 2020 Apr 2.
7
The Nitrate-Responsive Protein MdBT2 Regulates Anthocyanin Biosynthesis by Interacting with the MdMYB1 Transcription Factor.
Plant Physiol. 2018 Oct;178(2):890-906. doi: 10.1104/pp.18.00244. Epub 2018 Aug 28.
8
MdMYB88 and MdMYB124 Enhance Drought Tolerance by Modulating Root Vessels and Cell Walls in Apple.
Plant Physiol. 2018 Nov;178(3):1296-1309. doi: 10.1104/pp.18.00502. Epub 2018 Sep 6.
9
The apple BTB protein MdBT2 positively regulates MdCOP1 abundance to repress anthocyanin biosynthesis.
Plant Physiol. 2022 Aug 29;190(1):305-318. doi: 10.1093/plphys/kiac279.

引用本文的文献

3
CsNAC17 enhances resistance to by interacting with CsbHLH62 in .
Hortic Res. 2024 Oct 14;12(2):uhae295. doi: 10.1093/hr/uhae295. eCollection 2025 Feb.
5
Genome-wide identification, structural and gene expression analysis of BTB gene family in soybean.
BMC Plant Biol. 2024 Jul 11;24(1):663. doi: 10.1186/s12870-024-05365-1.
6
Calmodulin-like protein MdCML15 interacts with MdBT2 to modulate iron homeostasis in apple.
Hortic Res. 2024 Mar 25;11(5):uhae081. doi: 10.1093/hr/uhae081. eCollection 2024 May.
7
MdbZIP44-MdCPRF2-like- regulate starch and sugar metabolism in apple under nitrogen supply.
Hortic Res. 2024 Mar 15;11(5):uhae072. doi: 10.1093/hr/uhae072. eCollection 2024 May.
9
Insights into the molecular mechanisms underlying responses of apple trees to abiotic stresses.
Hortic Res. 2023 Jul 27;10(8):uhad144. doi: 10.1093/hr/uhad144. eCollection 2023 Aug.

本文引用的文献

1
Improving coordination of plant growth and nitrogen metabolism for sustainable agriculture.
aBIOTECH. 2020 Aug 31;1(4):255-275. doi: 10.1007/s42994-020-00027-w. eCollection 2020 Oct.
2
Improving nitrogen use efficiency by manipulating nitrate remobilization in plants.
Nat Plants. 2020 Sep;6(9):1126-1135. doi: 10.1038/s41477-020-00758-0. Epub 2020 Aug 31.
9
Managing nitrogen to restore water quality in China.
Nature. 2019 Mar;567(7749):516-520. doi: 10.1038/s41586-019-1001-1. Epub 2019 Feb 28.
10
MdbHLH93, an apple activator regulating leaf senescence, is regulated by ABA and MdBT2 in antagonistic ways.
New Phytol. 2019 Apr;222(2):735-751. doi: 10.1111/nph.15628. Epub 2019 Jan 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验