College of Agronomy & Biotechnology, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, 650201, China.
Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China.
BMC Plant Biol. 2024 Feb 12;24(1):105. doi: 10.1186/s12870-024-04768-4.
Nitrogen (N) metabolism-related key genes and conserved amino acid sites in key enzymes play a crucial role in improving N use efficiency (NUE) under N stress. However, it is not clearly known about the molecular mechanism of N deficiency-induced improvement of NUE in the N-sensitive rhizomatous medicinal plant Panax notoginseng (Burk.) F. H. Chen. To explore the potential regulatory mechanism, the transcriptome and proteome were analyzed and the three-dimensional (3D) information and molecular docking models of key genes were compared in the roots of P. notoginseng grown under N regimes.
Total N uptake and the proportion of N distribution to roots were significantly reduced, but the NUE, N use efficiency in biomass production (NUEb), the recovery of N fertilizer (RNF) and the proportion of N distribution to shoot were increased in the N-treated (without N addition) plants. The expression of N uptake- and transport-related genes NPF1.2, NRT2.4, NPF8.1, NPF4.6, AVP, proteins AMT and NRT2 were obviously up-regulated in the N-grown plants. Meanwhile, the expression of CIPK23, PLC2, NLP6, TCP20, and BT1 related to the nitrate signal-sensing and transduction were up-regulated under the N condition. Glutamine synthetase (GS) activity was decreased in the N-deficient plants, while the activity of glutamate dehydrogenase (GDH) increased. The expression of genes GS1-1 and GDH1, and proteins GDH1 and GDH2 were up-regulated in the N-grown plants, there was a significantly positive correlation between the expression of protein GDH1 and of gene GDH1. Glu192, Glu199 and Glu400 in PnGS1 and PnGDH1were the key amino acid residues that affect the NUE and lead to the differences in GDH enzyme activity. The 3D structure, docking model, and residues of Solanum tuberosum and P. notoginseng was similar.
N deficiency might promote the expression of key genes for N uptake (genes NPF8.1, NPF4.6, AMT, AVP and NRT2), transport (NPF1.2 and NRT2.4), assimilation (proteins GS1 and GDH1), signaling and transduction (genes CIPK23, PLC2, NLP6, TCP20, and BT1) to enhance NUE in the rhizomatous species. N deficiency might induce Glu192, Glu199 and Glu400 to improve the biological activity of GS1 and GDH, this has been hypothesized to be the main reason for the enhanced ability of N assimilation in N-deficient rhizomatous species. The key genes and residues involved in improving NUE provide excellent candidates for the breeding of medicinal plants.
氮(N)代谢相关关键基因和关键酶中的保守氨基酸位点在提高 N 胁迫下的 N 利用效率(NUE)方面起着至关重要的作用。然而,在 N 敏感的根茎状药用植物人参(Panax notoginseng (Burk.) F. H. Chen)中,N 缺乏诱导 NUE 提高的分子机制尚不清楚。为了探讨潜在的调控机制,对 N 处理(不添加 N)和对照(添加 N)条件下的人参根进行了转录组和蛋白质组分析,并比较了关键基因的三维(3D)信息和分子对接模型。
总 N 吸收和 N 向根部分配的比例显著降低,但 N 处理植物的 NUE、生物量生产中的 N 利用效率(NUEb)、N 肥回收率(RNF)和 N 向地上部分分配的比例增加。N 吸收和转运相关基因 NPF1.2、NRT2.4、NPF8.1、NPF4.6、AVP、AMT 和 NRT2 蛋白的表达在 N 生长的植物中明显上调。同时,硝酸盐信号感应和转导相关的 CIPK23、PLC2、NLP6、TCP20 和 BT1 基因的表达在 N 条件下上调。在缺 N 植物中,谷氨酰胺合成酶(GS)活性降低,而谷氨酸脱氢酶(GDH)活性增加。N 生长的植物中基因 GS1-1 和 GDH1 以及蛋白 GDH1 和 GDH2 的表达上调,蛋白 GDH1 的表达与基因 GDH1 的表达呈显著正相关。PnGS1 和 PnGDH1 中的 Glu192、Glu199 和 Glu400 是影响 NUE 并导致 GDH 酶活性差异的关键氨基酸残基。茄属和人参的 3D 结构、对接模型和残基相似。
N 缺乏可能会促进 N 吸收(基因 NPF8.1、NPF4.6、AMT、AVP 和 NRT2)、转运(NPF1.2 和 NRT2.4)、同化(蛋白 GS1 和 GDH1)、信号转导(基因 CIPK23、PLC2、NLP6、TCP20 和 BT1)的关键基因的表达,从而提高根茎状物种的 NUE。N 缺乏可能诱导 Glu192、Glu199 和 Glu400 提高 GS1 和 GDH 的生物学活性,这被假设是提高 N 缺乏根茎状物种 N 同化能力的主要原因。提高 NUE 的关键基因和残基为药用植物的选育提供了极好的候选基因。