Suppr超能文献

基于上肢功能测试的腕部传感器衍生衰弱指数预测老年人功能性移动能力。

A Wrist-Worn Sensor-Derived Frailty Index Based on an Upper-Extremity Functional Test in Predicting Functional Mobility in Older Adults.

机构信息

Interdisciplinary Consortium on Advanced Motion Performance (iCAMP), Division of Vascular Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, USA.

Houston Center for Innovations in Quality, Effectiveness, and Safety, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, USA.

出版信息

Gerontology. 2021;67(6):753-761. doi: 10.1159/000515078. Epub 2021 Apr 1.

Abstract

INTRODUCTION

Preoperative frailty is an independent risk factor for postoperative complications across surgical specialties. Functional mobility such as gait, timed up and go (TUG), and 5 times sit-to-stand (5-STS) are popular preoperative frailty measurements but are not suitable for patients with severe mobility impairment. A wrist-worn sensor-derived frailty index based on an upper-extremity functional test (20-s repetitive elbow flexion-extension task; UEFI) was developed previously; however, its association with functional mobility remained unexplored. We aimed to investigate the predictive power of the UEFI in predicting functional mobility.

METHODS

We examined correlation between the UEFI and gait speed, TUG duration, and 5-STS duration in 100 older adults (≥ 65 years) using multivariate regression analysis. The UEFI was calculated using slowness, weakness, exhaustion, and flexibility of the sensor-based 20-s repetitive elbow flexion-extension task.

RESULTS

The UEFI was a significant predictor for gait speed and TUG duration and 5-STS duration (all R ≥ 0.60; all p < 0.001) with the variance (adjusted R2) of 35-37% for the dependent variables. The multivariate regression analysis revealed significant associations between the UEFI and gait speed (β = -0.84; 95% confidence interval [95% CI] = [-1.19, -0.50]; p < 0.001) and TUG duration (β = 16.2; 95% CI = [9.59, 22.8]; p < 0.001) and 5-STS duration (β = 33.3; 95% CI = [23.6, 43.2]; p < 0.001), found after accounting for confounding variables (e.g., age and fear of falling scale).

CONCLUSIONS

Our findings suggest that the UEFI can be performed with a wrist-worn sensor and has been validated with other established measures of preoperative frailty. The UEFI can be applied in a wide variety of patients, regardless of mobility limitations, in an outpatient setting.

摘要

简介

术前衰弱是各外科专业术后并发症的独立危险因素。步态、计时起立行走测试(TUG)和 5 次坐站测试(5-STS)等功能性移动能力常用于术前衰弱评估,但不适合严重移动能力受损的患者。先前已经开发出一种基于上肢功能测试(20 秒重复肘部屈伸任务;UEFI)的腕戴式传感器衍生衰弱指数来进行评估,但尚未对其与功能性移动能力的相关性进行研究。我们旨在探讨 UEFI 预测功能性移动能力的能力。

方法

我们使用多元回归分析,检查了 100 名老年人(≥65 岁)的 UEFI 与步态速度、TUG 持续时间和 5-STS 持续时间之间的相关性。UEFI 是通过基于传感器的 20 秒重复肘部屈伸任务的速度、力量、疲劳和灵活性计算得出的。

结果

UEFI 是步态速度和 TUG 持续时间以及 5-STS 持续时间的显著预测指标(所有 R ≥ 0.60;所有 p < 0.001),因变量的方差(调整后的 R2)为 35-37%。多元回归分析显示 UEFI 与步态速度(β = -0.84;95%置信区间 [95%CI] = [-1.19, -0.50];p < 0.001)和 TUG 持续时间(β = 16.2;95%CI = [9.59, 22.8];p < 0.001)以及 5-STS 持续时间(β = 33.3;95%CI = [23.6, 43.2];p < 0.001)之间存在显著关联,这些关联在考虑混杂变量(如年龄和跌倒恐惧量表)后仍然存在。

结论

我们的研究结果表明,UEFI 可以通过腕戴式传感器进行检测,并且已经通过其他术前衰弱的既定评估方法进行了验证。UEFI 可以应用于各种患者,无论其移动能力受限与否,都可以在门诊环境中进行。

相似文献

引用本文的文献

3
Cellular Senescence and Frailty in Transplantation.移植中的细胞衰老与衰弱
Curr Transplant Rep. 2023 Jun;10(2):51-59. doi: 10.1007/s40472-023-00393-6. Epub 2023 Mar 21.

本文引用的文献

3
Scoping review of frailty in vascular surgery.血管外科学中衰弱的范围综述。
J Vasc Surg. 2019 Jun;69(6):1989-1998.e2. doi: 10.1016/j.jvs.2018.10.053. Epub 2018 Dec 24.
4
The effect of mood phases on balance control in bipolar disorder.情绪阶段对双相情感障碍患者平衡控制的影响。
J Biomech. 2019 Jan 3;82:266-270. doi: 10.1016/j.jbiomech.2018.10.039. Epub 2018 Nov 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验