Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden.
Evid Based Ment Health. 2021 Nov;24(4):146-152. doi: 10.1136/ebmental-2020-300231. Epub 2021 Apr 1.
Accurate estimation of daily dosage and duration of medication use is essential to pharmacoepidemiological studies using electronic healthcare databases. However, such information is not directly available in many prescription databases, including the Swedish Prescribed Drug Register.
To develop and validate an algorithm for predicting prescribed daily dosage and treatment duration from free-text prescriptions, and apply the algorithm to ADHD medication prescriptions.
We developed an algorithm to predict daily dosage from free-text prescriptions using 8000 ADHD medication prescriptions as the training sample, and estimated treatment periods while taking into account several features including titration, stockpiling and non-perfect adherence. The algorithm was implemented to all ADHD medication prescriptions from the Swedish Prescribed Drug Register in 2013. A validation sample of 1000 ADHD medication prescriptions, independent of the training sample, was used to assess the accuracy for predicted daily dosage.
In the validation sample, the overall accuracy for predicting daily dosage was 96.8%. Specifically, the natural language processing model (NLP1 and NLP2) have an accuracy of 99.2% and 96.3%, respectively. In an application to ADHD medication prescriptions in 2013, young adult ADHD medication users had the highest probability of discontinuing treatments as compared with other age groups. The daily dose of methylphenidate use increased with age substantially.
The algorithm provides a flexible approach to estimate prescribed daily dosage and treatment duration from free-text prescriptions using register data. The algorithm showed a good performance for predicting daily dosage in external validation.
The structured output of the algorithm could serve as basis for future pharmacoepidemiological studies evaluating utilization, effectiveness, and safety of medication use, which would facilitate evidence-based treatment decision-making.
在使用电子医疗保健数据库进行药物流行病学研究时,准确估计药物的日剂量和使用持续时间至关重要。然而,许多处方数据库(包括瑞典处方药物登记册)都没有提供此类信息。
开发并验证一种从文本处方中预测规定日剂量和治疗持续时间的算法,并将该算法应用于 ADHD 药物处方。
我们开发了一种从文本处方中预测日剂量的算法,该算法使用 8000 份 ADHD 药物处方作为训练样本,并考虑了一些特征(包括滴定、库存和非完美依从性)来估计治疗周期。该算法应用于 2013 年瑞典处方药物登记册中的所有 ADHD 药物处方。使用 1000 份 ADHD 药物处方(与训练样本无关)作为验证样本,评估预测日剂量的准确性。
在验证样本中,预测日剂量的总体准确性为 96.8%。具体来说,自然语言处理模型(NLP1 和 NLP2)的准确性分别为 99.2%和 96.3%。在 2013 年 ADHD 药物处方的应用中,与其他年龄组相比,年轻成年 ADHD 药物使用者停止治疗的可能性最高。使用哌醋甲酯的日剂量随着年龄的增长而大幅增加。
该算法为使用登记数据从文本处方中估算规定日剂量和治疗持续时间提供了一种灵活的方法。该算法在外部验证中显示了良好的预测日剂量性能。
该算法的结构化输出可作为未来评估药物使用的利用、效果和安全性的药物流行病学研究的基础,从而促进基于证据的治疗决策。