Öztürk Fahri Emre, Lappe Tim, Hellmann Göran, Schmitt Julian, Klaers Jan, Vewinger Frank, Kroha Johann, Weitz Martin
Institut für Angewandte Physik, Universität Bonn, Wegelerstr. 8, 53115 Bonn, Germany.
Physikalisches Institut, Universität Bonn, Nussallee 12, 53115 Bonn, Germany.
Science. 2021 Apr 2;372(6537):88-91. doi: 10.1126/science.abe9869.
Quantum gases of light, such as photon or polariton condensates in optical microcavities, are collective quantum systems enabling a tailoring of dissipation from, for example, cavity loss. This characteristic makes them a tool to study dissipative phases, an emerging subject in quantum many-body physics. We experimentally demonstrate a non-Hermitian phase transition of a photon Bose-Einstein condensate to a dissipative phase characterized by a biexponential decay of the condensate's second-order coherence. The phase transition occurs because of the emergence of an exceptional point in the quantum gas. Although Bose-Einstein condensation is usually connected to lasing by a smooth crossover, the observed phase transition separates the biexponential phase from both lasing and an intermediate, oscillatory condensate regime. Our approach can be used to study a wide class of dissipative quantum phases in topological or lattice systems.
光的量子气体,例如光学微腔中的光子或极化激元凝聚体,是集体量子系统,能够实现对例如腔损耗等耗散的调控。这一特性使其成为研究耗散相的工具,耗散相是量子多体物理中一个新兴的课题。我们通过实验证明了光子玻色 - 爱因斯坦凝聚体到耗散相的非厄米相变,该耗散相的特征是凝聚体二阶相干性的双指数衰减。相变的发生是由于量子气体中出现了一个例外点。尽管玻色 - 爱因斯坦凝聚通常通过平滑交叉与激光发射相联系,但观察到的相变将双指数相与激光发射以及中间的振荡凝聚体区域区分开来。我们的方法可用于研究拓扑或晶格系统中的一大类耗散量子相。