Król M, Septembre I, Oliwa P, Kędziora M, Łempicka-Mirek K, Muszyński M, Mazur R, Morawiak P, Piecek W, Kula P, Bardyszewski W, Lagoudakis P G, Solnyshkov D D, Malpuech G, Piętka B, Szczytko J
Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland.
Institut Pascal, PHOTON-N2, Université Clermont Auvergne, CNRS, Clermont INP, F-63000, Clermont-Ferrand, France.
Nat Commun. 2022 Sep 12;13(1):5340. doi: 10.1038/s41467-022-33001-9.
Topological physics relies on Hamiltonian's eigenstate singularities carrying topological charges, such as Dirac points, and - in non-Hermitian systems - exceptional points (EPs), lines or surfaces. So far, the reported non-Hermitian topological transitions were related to the creation of a pair of EPs connected by a Fermi arc out of a single Dirac point by increasing non-Hermiticity. Such EPs can annihilate by reducing non-Hermiticity. Here, we demonstrate experimentally that an increase of non-Hermiticity can lead to the annihilation of EPs issued from different Dirac points (valleys). The studied platform is a liquid crystal microcavity with voltage-controlled birefringence and TE-TM photonic spin-orbit-coupling. Non-Hermiticity is provided by polarization-dependent losses. By increasing the non-Hermiticity degree, we control the position of the EPs. After the intervalley annihilation, the system becomes free of any band singularity. Our results open the field of non-Hermitian valley-physics and illustrate connections between Hermitian topology and non-Hermitian phase transitions.
拓扑物理学依赖于携带拓扑电荷的哈密顿本征态奇点,如狄拉克点,以及在非厄米系统中的例外点(EPs)、线或面。到目前为止,所报道的非厄米拓扑转变与通过增加非厄米性从单个狄拉克点产生一对由费米弧连接的EPs有关。通过降低非厄米性,这样的EPs可以湮灭。在这里,我们通过实验证明,增加非厄米性会导致从不同狄拉克点(能谷)产生的EPs湮灭。所研究的平台是一个具有电压控制双折射和TE-TM光子自旋轨道耦合的液晶微腔。非厄米性由偏振相关损耗提供。通过增加非厄米性程度,我们控制EPs的位置。在能谷间湮灭之后,系统变得没有任何能带奇点。我们的结果开启了非厄米能谷物理学领域,并阐明了厄米拓扑与非厄米相变之间的联系。