Suppr超能文献

多中心改善儿科脓毒症结局(IPSO)协作的指标制定。

Metric Development for the Multicenter Improving Pediatric Sepsis Outcomes (IPSO) Collaborative.

机构信息

Division of Emergency Medicine, Advocate Children's Hospital, Park Ridge, Illinois;

Division of Pediatric Critical Care Medicine, Department of Pediatrics, School of Medicine, University of Michigan, Ann Arbor, Michigan.

出版信息

Pediatrics. 2021 May;147(5). doi: 10.1542/peds.2020-017889. Epub 2021 Apr 1.

Abstract

BACKGROUND

A 56 US hospital collaborative, Improving Pediatric Sepsis Outcomes, has developed variables, metrics and a data analysis plan to track quality improvement (QI)-based patient outcomes over time. Improving Pediatric Sepsis Outcomes expands on previous pediatric sepsis QI efforts by improving electronic data capture and uniformity across sites.

METHODS

An expert panel developed metrics and corresponding variables to assess improvements across the care delivery spectrum, including the emergency department, acute care units, hematology and oncology, and the ICU. Outcome, process, and balancing measures were represented. Variables and statistical process control charts were mapped to each metric, elucidating progress over time and informing plan-do-study-act cycles. Electronic health record (EHR) abstraction feasibility was prioritized. Time 0 was defined as time of earliest sepsis recognition (determined electronically), or as a clinically derived time 0 (manually abstracted), identifying earliest physiologic onset of sepsis.

RESULTS

Twenty-four evidence-based metrics reflected timely and appropriate interventions for a uniformly defined sepsis cohort. Metrics mapped to statistical process control charts with 44 final variables; 40 could be abstracted automatically from multiple EHRs. Variables, including high-risk conditions and bedside huddle time, were challenging to abstract (reported in <80% of encounters). Size or type of hospital, method of data abstraction, and previous QI collaboration participation did not influence hospitals' abilities to contribute data. To date, 90% of data have been submitted, representing 200 007 sepsis episodes.

CONCLUSIONS

A comprehensive data dictionary was developed for the largest pediatric sepsis QI collaborative, optimizing automation and ensuring sustainable reporting. These approaches can be used in other large-scale sepsis QI projects in which researchers seek to leverage EHR data abstraction.

摘要

背景

一个由 56 家美国医院组成的合作组织——改善儿科脓毒症结局(Improving Pediatric Sepsis Outcomes),已经开发出变量、指标和数据分析计划,以跟踪基于质量改进(QI)的患者结局随时间的变化。改善儿科脓毒症结局(Improving Pediatric Sepsis Outcomes)在之前的儿科脓毒症 QI 工作的基础上,通过提高电子数据采集的效率和各站点之间的一致性,取得了进展。

方法

一个专家小组制定了指标和相应的变量,以评估从整个护理提供过程的各个方面的改进,包括急诊科、急性护理病房、血液科和肿瘤科以及 ICU。结果、过程和平衡指标都有所体现。变量和统计过程控制图与每个指标相关联,阐明了随时间的进展,并为计划-执行-研究-行动循环提供了信息。电子健康记录(EHR)提取的可行性被优先考虑。时间 0 定义为最早识别脓毒症的时间(电子确定),或根据临床衍生的时间 0(手动提取),确定脓毒症最早的生理发生时间。

结果

24 项基于证据的指标反映了为一个统一定义的脓毒症队列提供及时和适当的干预措施。指标映射到统计过程控制图,有 44 个最终变量;其中 40 个可以从多个 EHR 自动提取。变量,包括高危情况和床边小组讨论时间,提取具有挑战性(在<80%的就诊中报告)。医院的规模或类型、数据提取方法以及之前的 QI 合作参与情况,都没有影响医院提供数据的能力。迄今为止,已经提交了 90%的数据,代表了 200007 例脓毒症病例。

结论

为最大的儿科脓毒症 QI 合作开发了一个全面的数据字典,优化了自动化,并确保了可持续报告。这些方法可以用于其他寻求利用电子健康记录数据提取的大型脓毒症 QI 项目中。

相似文献

3
Improving adherence to PALS septic shock guidelines.提高对 PALS 脓毒性休克指南的依从性。
Pediatrics. 2014 May;133(5):e1358-66. doi: 10.1542/peds.2013-3871. Epub 2014 Apr 7.
4
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.

引用本文的文献

7
Medication and Fluid Management of Pediatric Sepsis and Septic Shock.儿童脓毒症和脓毒性休克的药物及液体管理
Paediatr Drugs. 2022 May;24(3):193-205. doi: 10.1007/s40272-022-00497-z. Epub 2022 Mar 21.

本文引用的文献

7
Quality Improvement and Safety in Pediatric Emergency Medicine.儿科急诊医学中的质量改进与安全
Pediatr Clin North Am. 2018 Dec;65(6):1269-1281. doi: 10.1016/j.pcl.2018.07.010.
8
A Quality Improvement Collaborative for Pediatric Sepsis: Lessons Learned.儿童脓毒症质量改进协作组:经验教训
Pediatr Qual Saf. 2017 Dec 29;3(1):e051. doi: 10.1097/pq9.0000000000000051. eCollection 2018 Jan-Feb.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验