Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109.
Department of Mathematics, University of Michigan, Ann Arbor, MI 48109.
Proc Natl Acad Sci U S A. 2021 Apr 6;118(14). doi: 10.1073/pnas.2011140118.
Mutations in the melanocortin 4 receptor (MC4R) result in hyperphagia and obesity and are the most common cause of monogenic obesity in humans. Preclinical rodent studies have determined that the critical role of the MC4R in controlling feeding can be mapped in part to its expression in the paraventricular nucleus of the hypothalamus (paraventricular nucleus [PVN]), where it regulates the activity of anorexic neural circuits. Despite the critical role of PVN MC4R neurons in regulating feeding, the in vivo neuronal activity of these cells remains largely unstudied, and the network activity of PVN MC4R neurons has not been determined. Here, we utilize in vivo single-cell endomicroscopic and mathematical approaches to determine the activity and network dynamics of PVN MC4R neurons in response to changes in energy state and pharmacological manipulation of central melanocortin receptors. We determine that PVN MC4R neurons exhibit both quantitative and qualitative changes in response to fasting and refeeding. Pharmacological stimulation of MC4R with the therapeutic MC4R agonist setmelanotide rapidly increases basal PVN MC4R activity, while stimulation of melanocortin 3 receptor (MC3R) inhibits PVN MC4R activity. Finally, we find that distinct PVN MC4R neuronal ensembles encode energy deficit and energy surfeit and that energy surfeit is associated with enhanced network connections within PVN MC4R neurons. These findings provide valuable insight into the neural dynamics underlying hunger and energy surfeit.
黑皮质素 4 受体 (MC4R) 突变导致食欲过盛和肥胖,是人类单基因肥胖的最常见原因。临床前啮齿动物研究已经确定,MC4R 在控制进食方面的关键作用部分可以映射到其在下丘脑室旁核 (PVN) 中的表达,在那里它调节厌食性神经回路的活性。尽管 PVN MC4R 神经元在调节进食方面起着至关重要的作用,但这些细胞的体内神经元活性在很大程度上仍未得到研究,并且尚未确定 PVN MC4R 神经元的网络活动。在这里,我们利用体内单细胞内窥和数学方法来确定能量状态变化和中枢黑皮质素受体药物操纵时 PVN MC4R 神经元的活动和网络动力学。我们确定 PVN MC4R 神经元在响应禁食和再进食时表现出定量和定性的变化。用治疗性 MC4R 激动剂赛美拉肽对 MC4R 进行药理学刺激可迅速增加基础 PVN MC4R 活性,而刺激黑皮质素 3 受体 (MC3R) 则抑制 PVN MC4R 活性。最后,我们发现不同的 PVN MC4R 神经元集合编码能量不足和能量过剩,并且能量过剩与 PVN MC4R 神经元内增强的网络连接有关。这些发现为饥饿和能量过剩的神经动力学提供了有价值的见解。