Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States.
Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, United States.
Mol Metab. 2022 Jan;55:101401. doi: 10.1016/j.molmet.2021.101401. Epub 2021 Nov 22.
The paraventricular nucleus of hypothalamus (PVN), an integrative center in the brain, orchestrates a wide range of physiological and behavioral responses. While the PVN melanocortin 4 receptor (MC4R) signaling (PVN) is involved in feeding regulation, the neuroanatomical organization of PVN connectivity and its role in other physiological regulations are incompletely understood. Here we aimed to better characterize the input-output organization of PVN neurons and test their physiological functions beyond feeding.
Using a combination of viral tools, we mapped PVN circuits and tested the effects of chemogenetic activation of PVN neurons on thermoregulation, cardiovascular control, and other behavioral responses beyond feeding.
We found that PVN neurons innervate many different brain regions that are known to be important not only for feeding but also for neuroendocrine and autonomic control of thermoregulation and cardiovascular function, including but not limited to the preoptic area, median eminence, parabrachial nucleus, pre-locus coeruleus, nucleus of solitary tract, ventrolateral medulla, and thoracic spinal cord. Contrary to these broad efferent projections, PVN neurons receive monosynaptic inputs mainly from other hypothalamic nuclei (preoptic area, arcuate and dorsomedial hypothalamic nuclei, supraoptic nucleus, and premammillary nucleus), the circumventricular organs (subfornical organ and vascular organ of lamina terminalis), the bed nucleus of stria terminalis, and the parabrachial nucleus. Consistent with their broad efferent projections, chemogenetic activation of PVN neurons not only suppressed feeding but also led to an apparent increase in heart rate, blood pressure, and brown adipose tissue temperature. These physiological changes accompanied acute transient hyperactivity followed by hypoactivity and resting-like behavior.
Our results elucidate the neuroanatomical organization of PVN circuits and shed new light on the roles of PVN pathways in autonomic control of thermoregulation, cardiovascular function, and biphasic behavioral activation.
下丘脑室旁核(PVN)作为大脑中的一个整合中心,协调着广泛的生理和行为反应。虽然 PVN 中的黑皮质素 4 受体(MC4R)信号参与了摄食调节,但 PVN 连接的神经解剖组织及其在其他生理调节中的作用尚不完全清楚。在这里,我们旨在更好地描述 PVN 神经元的输入-输出组织,并测试其摄食以外的生理功能。
我们使用病毒工具的组合,绘制了 PVN 回路,并测试了化学遗传激活 PVN 神经元对体温调节、心血管控制和摄食以外的其他行为反应的影响。
我们发现,PVN 神经元支配着许多不同的脑区,这些脑区不仅对摄食,而且对神经内分泌和自主神经对体温调节和心血管功能的控制都很重要,包括但不限于视前区、正中隆起、臂旁核、前蓝斑核、孤束核、腹外侧延髓和胸段脊髓。与这些广泛的传出投射相反,PVN 神经元主要接收来自其他下丘脑核(视前区、弓状核和下丘脑背内侧核、视上核和乳突前核)、室周器官(穹窿下器官和终板血管器官)、终纹床核和臂旁核的单突触传入。与它们广泛的传出投射一致,化学遗传激活 PVN 神经元不仅抑制了摄食,还导致心率、血压和棕色脂肪组织温度的明显增加。这些生理变化伴随着急性短暂的过度活跃,随后是活动减少和休息样行为。
我们的研究结果阐明了 PVN 回路的神经解剖组织,并揭示了 PVN 通路在体温调节、心血管功能和双相行为激活的自主控制中的作用。